Synchronie large-scale disturbances and red spruce growth decline

1993 ◽  
Vol 23 (7) ◽  
pp. 1361-1374 ◽  
Author(s):  
Gregory A. Reams ◽  
Paul C. Van Deusen

Tree-ring data from the USDA Forest Service Forest Inventory & Analysis and other independent sources were used to study coincidence of changes in growth and large-scale disturbances. Numerous studies report that mean radial growth of red spruce (Picearubens Sarg.) declined synchronously throughout its range in the early 1960s. We use red spruce tree-ring data from most of the major studies to show that the synchronicity of red spruce growth decline is likely the outcome of the large-scale disturbances that occurred throughout the northeastern red spruce ecosystem in the late 1930s to early 1950s. Large-scale disturbances are either not detectable or not present in the same time interval in the southern Appalachians. This appears to correspond to an absence of a 1960s radial growth reduction in this region.

2020 ◽  
Author(s):  
Justin T. Maxwell ◽  
Grant L. Harley ◽  
Trevis J. Matheus ◽  
Brandon M. Strange ◽  
Kayla Van Aken ◽  
...  

Abstract. Our understanding of the natural variability of hydroclimate before the instrumental period (ca. 1900 in the United States; US) is largely dependent on tree-ring-based reconstructions. Large-scale soil moisture reconstructions from a network of tree-ring chronologies have greatly improved our understanding of the spatial and temporal variability in hydroclimate conditions, particularly extremes of both drought and pluvial (wet) events. However, certain regions within these large-scale reconstructions in the US have a sparse network of tree-ring chronologies. Further, several chronologies were collected in the 1980s and 1990s, thus our understanding of the sensitivity of radial growth to soil moisture in the US is based on a period that experienced multiple extremely severe droughts and neglects the impacts of recent, rapid global change. In this study, we expanded the tree-ring network of the Ohio River Valley in the US, a region with sparse coverage. We used a total of 72 chronologies across 15 species to examine how increasing the density of the tree-ring network influences the representation of reconstructing the Palmer Meteorological Drought Index (PMDI). Further, we tested how the sampling date influenced the reconstruction models by creating reconstructions that ended in the year 1980 and compared them to reconstructions ending in 2010 from the same chronologies. We found that increasing the density of the tree-ring network resulted in reconstructed values that better matched the spatial variability of instrumentally recorded droughts and to a lesser extent, pluvials. By sampling tree in 2010 compared to 1980, the sensitivity of tree rings to PMDI decreased in the southern portion of our region where severe drought conditions have been absent over recent decades. We emphasize the need of building a high-density tree-ring network to better represent the spatial variability of past droughts and pluvials. Further, chronologies on the International Tree-Ring Data Bank need updating regularly to better understand how the sensitivity of tree rings to climate may vary through time.


1990 ◽  
Vol 20 (9) ◽  
pp. 1415-1421 ◽  
Author(s):  
David C. LeBlanc ◽  
Dudley J. Raynal

Understanding the relationship between apical and radial growth decline can contribute toward the evaluation of hypotheses regarding causal mechanisms of red spruce decline. The etiology of red spruce decline in montane spruce-fir forests of the northeastern United States includes loss of foliage at branch apices, crown dieback, and unreversed radial growth decline since the 1960s. Demographic analyses of crown damage and radial growth decline for red spruce on Whiteface Mountain, New York, indicate that large, canopy-emergent trees with exposed crowns exhibit greater decline than codominant trees within an intact canopy. In this paper, radial growth decline is shown to have been coincident with decreased apical growth and increased incidence of injury to terminal leaders. Incidence of leader mortality is greatest for canopy-emergent red spruce or trees with exposed crowns, similar to patterns described for radial growth. This relationship suggests that the post-1960 decline of red spruce on Whiteface Mountain is caused, at least in part, by stresses that act directly on the crown.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1002
Author(s):  
Rafael M. Navarro-Cerrillo ◽  
Antonio Gazol ◽  
Carlos Rodríguez-Vallejo ◽  
Rubén D. Manzanedo ◽  
Guillermo Palacios-Rodríguez ◽  
...  

Systematic forest networks of health monitoring have been established to follow changes in tree vigor and mortality. These networks often lack long-term growth data, but they could be complemented with tree ring data, since both defoliation and radial growth are proxies of changes in tree vigor. For instance, a severe water shortage should reduce growth and increase tree defoliation in drought-prone areas. However, the effects of climatic stress and drought on growth and defoliation could also depend on tree age. To address these issues, we compared growth and defoliation data with recent climate variability and drought severity in Abies pinsapo old and young trees sampled in Southern Spain, where a systematic health network (Andalucía Permanent Plot Network) was established. Our aims were: (i) to assess the growth sensitivity of old and young A. pinsapo trees and (ii) to test if relative changes in radial growth were related with recent defoliation, for instance, after severe droughts. We also computed the resilience indices to quantify how old and young trees recovered growth after recent droughts. Wet-cool conditions during the prior autumn and the current early summer improved the growth of old trees, whereas late-spring wet conditions enhanced the growth of young trees. Old trees were more sensitive to wet and sunny conditions in the early summer than young trees. Old and young trees were more responsive to the Standardized Precipitation-Evapotranspiration Index drought index of June–July and July–August calculated at short (one–three months) and mid (three–six months) time scales, respectively. Old trees presented a higher resistance to a severe drought in 1995 than young trees. A positive association was found between stand defoliation and relative growth. Combining monitoring and tree ring networks is useful for the detection of early warning signals of dieback in similar drought-prone forests.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  

Coniferous forests cover the mountains in many parts of Central Asia and provide large potentials for dendroclimatic studies of past climate variability. However, to date, only a few tree-ring based climate reconstructions exist from this region. Here, we present a regional tree-ring chronology from the moisture-sensitive Zeravshan juniper (Juniperus seravschanica Kom.) from the Kuramin Range (Tajikistan) in western Central Asia, which is used to reveal past summer drought variability from 1650 to 2015 Common Era (CE). The chronology accounts for 40.5% of the variance of the June–July self-calibrating Palmer Drought Severity Index (scPDSI) during the instrumental period (1901 to 2012). Seven dry periods, including 1659–1696, 1705–1722, 1731–1741, 1758–1790, 1800–1842, 1860–1875, and 1931–1987, and five wet periods, including 1742–1752, 1843–1859, 1876–1913, 1921–1930, and 1988–2015, were identified. Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals and capture the regional dry/wet periods of Central Asia. Moreover, the spectral analysis indicates the existence of centennial (128 years), decadal (24.3 and 11.4 years), and interannual (8.0, 3.6, 2.9, and 2.0 years) cycles, which may be linked with climate forces, such as solar activity and El Niño-Southern Oscillation (ENSO). The analysis between the scPDSI reconstruction and large-scale atmospheric circulations during the reconstructed extreme dry and wet years can provide information about the linkages of extremes in our scPDSI record with the large-scale ocean–atmosphere–land circulation systems.


1987 ◽  
Vol 17 (12) ◽  
pp. 1487-1495 ◽  
Author(s):  
Paul C. Van Deusen

Increment-core data for old-growth red spruce (Picearubens Sarg.) were collected for dendrochonological purposes and compared with second-growth data obtained from USDA Forest Service inventory plots in Maine, New Hampshire, Vermont, and New York. The research objective was to test the hypothesis suggested by J. W. Hornbeck and R. B. Smith (1985, Can. J. For. Res. 15: 1199–1201) that red spruce show reduced growth in the Northeastern United States due to stand dynamics resulting from past logging and insect activity. A graphical approach and a modeling approach based on the Kalman filter were employed. The results indicate that the growth reduction is greater in second-growth stands and that the second-growth stands are converging to an old-growth condition. This supports the stand dynamics hypothesis for second-growth stands.


2008 ◽  
Vol 38 (10) ◽  
pp. 2635-2649 ◽  
Author(s):  
Daniel G. Gavin ◽  
Brian Beckage ◽  
Benjamin Osborne

Montane forests in the northeastern United States have experienced symptoms of declining vigor, such as branch dieback and increased mortality, over the last half-century. These declines have been attributed to the cumulative impacts of acid deposition, but reconstructing these declines from tree-ring records has proved difficult because of confounding factors that affect low-frequency growth patterns, including climate and natural growth trajectories following disturbance. We obtained tree-ring records of red spruce ( Picea rubens Sarg.) and sugar maple ( Acer saccharum L.) from three elevations on Bolton Mountain, Vermont, and applied traditional dendroclimatological analyses that revealed a profound declining growth–climate correlation since ca. 1970 for sugar maple but much less so for red spruce. We then applied a new multifaceted statistical approach that conservatively detrends tree-ring records by minimizing the influences of tree size, age, and canopy disturbances on radial growth. In contrast with the traditional analysis, this approach yielded chronologies that were consistently correlated with climate but with important exceptions. Low-elevation sugar maple suffered distinct episodes of slow growth, likely because of insect defoliators, and also a progressive decline since ca. 1988. Red spruce experienced subdecadal episodes of decline that may be related to freeze–thaw events known to injure foliage but showed no evidence of a progressive decline. This analysis was supported by a forest plot resurvey that indicated major declines in these species.


2016 ◽  
Vol 37 (4) ◽  
pp. 457-476 ◽  
Author(s):  
Magdalena Opała ◽  
Krzysztof Migała ◽  
Piotr Owczarek

Abstract This study presents the results of dendrochronological and dendroclimatological research of Betula pubescens from four sites in northern Norway (Kvaløya Island, Tromsøya Island and Storelva Valley), which provided a 193-year chronology. Our results highlight the importance of the site selection in dendroclimatological studies. We demonstrated that activity of geomorphic processes connected with local topography could led to reduced strength of climatic signal embedded in tree-ring data. Negative pointer years, triggered mainly by unfavourable climatic conditions and insect outbreaks, were common for all site chronologies in 1945, 1955, 1965, 1975, 1986, 2004. However, some site-specific differences were also distinguished. Response function analysis confirmed that June, July and August temperatures were positively correlated with tree-ring widths. This climate-growth relationship was stable throughout the years 1925–2000. From summer temperature reconstruction back to AD 1820, two colder (c. 1835–1850 and 1890–1920) and two warmer (c. 1825–1835 and 1920–1940) periods were identified. The tree-ring record from the Tromsø Region, well correlated between series, sites and climate variables, is an important element of a large-scale reconstruction of pre-instrumental climate variation in the northeastern part of the Atlantic Ocean. Our dendroclimatic reconstruction corresponds well with other climate proxy data, like fluctuations of mountain glaciers in Scandinavia or sea ice extent.


2021 ◽  
Vol 12 ◽  
Author(s):  
ShouJia Sun ◽  
JinSong Zhang ◽  
Jia Zhou ◽  
ChongFan Guan ◽  
Shuai Lei ◽  
...  

Understanding the response of tree growth and drought vulnerability to climate and competition is critical for managing plantation forests. We analyzed the growth of Mongolian pines in six forests planted by the Three-North Shelter Forest Program with tree-ring data and stand structures. A retroactive reconstruction method was used to depict the growth-competition relationships of Mongolian pines during the growth period and their climatic responses under different competition levels. Drought vulnerability was analyzed by measuring the basal area increment (BAI) of different competition indices (CIs). In young trees, differences in BAIs in stands with different CIs were not statistically significant. After 15–20 years, medium- and high-CI stands had significantly lower tree-ring widths (TWs) and BAIs than the low-CI stands (p < 0.05). The standardized precipitation evapotranspiration index (SPEI), precipitation, relative humidity, and vapor pressure deficit were major factors affecting tree growth. On a regional scale, climate outweighed competition in determining radial growth. The relative contribution of climatic factors increased with the gap in SPEI between plantation sites and the native range, while the reverse pattern of the competition-growth relationship was observed. Drought reduced TWs and BAIs at all sites. Stands of different CIs exhibited similar resistance, but, compared with low-CI stands, high- and medium-CI stands had significantly lower recovery, resilience, and relative resilience, indicating they were more susceptible to drought stresses. Modeled CI was significantly negatively related to resistance, resilience, and relative resilience, indicating a density-dependence of tree response to drought. After exposure to multiple sequential drought events, the relative resilience of high-CI stands decreased to almost zero; this failure to fully recover to pre-drought growth rates suggests increased mortality in the future. In contrast, low-CI stands are more likely to survive in hotter, more arid climates. These results provide a better understanding of the roles of competition and climate on the growth of Mongolian pines and offer a new perspective for investigating the density-dependent recovery and resilience of these forests.


1995 ◽  
Vol 25 (5) ◽  
pp. 859-869 ◽  
Author(s):  
Gregory A. Reams ◽  
Paul C. Van Deusen

not available


1990 ◽  
Vol 20 (6) ◽  
pp. 743-749 ◽  
Author(s):  
Paul C. Van Deusen

The red spruce (Picearubens Sarg.) growth decline in the northeastern United States does not appear to be ubiquitous. Some selected tree-ring data sets are compared graphically and with two models that tend to support the notion that differences exist between stands as to the presence and degree of decline. It appears that the degree of post-1960 decline is related to the proportion of trees showing a pre-1950 growth increase, and stratifying the data into as few as two classes can improve model fit substantially. The models used in the comparisons are of interest in themselves, because they are capable of exhibiting the mathematical phenomenon of chaos.


Sign in / Sign up

Export Citation Format

Share Document