scholarly journals Trait-based modelling in ecology: lessons from two decades of research

Author(s):  
Liubov Zakharova ◽  
Katrin M Meyer ◽  
Merav Seifan

Trait-based approaches are an alternative to species-based approaches for functionally linking individual organisms with community structure and dynamics. In the trait‑based approach, the focus is on the traits, the physiological, morphological, or life-history characteristics, of organisms rather than their species. Although used in ecological research for several decades, this approach only emerged in ecological modelling about twenty years ago. We review this rise of trait-based models and trace the occasional transfer of trait-based modelling concepts between terrestrial plant ecology, animal and microbial ecology, and aquatic ecology. Trait-based models have a variety of purposes, such as predicting changes in species distribution patterns under climate and land-use change, planning and assessing conservation management, or studying invasion processes. In modelling, trait-based approaches can reduce technical challenges such as computational limitations, scaling problems, and data scarcity. However, we note inconsistencies in the current usage of terms in trait-based approaches and these inconsistencies must be resolved if trait-based concepts are to be easily exchanged between disciplines. Specifically, future trait-based models may further benefit from incorporating intraspecific trait variability and addressing more complex species interactions. We also recommend expanding the combination of trait-based approaches with individual-based modelling to simplify the parameterization of models, to capture plant-plant interactions at the individual level, and to explain community dynamics under global change.

2019 ◽  
Author(s):  
Liubov Zakharova ◽  
Katrin M Meyer ◽  
Merav Seifan

Trait-based approaches are an alternative to species-based approaches for functionally linking individual organisms with community structure and dynamics. In the trait‑based approach, the focus is on the traits, the physiological, morphological, or life-history characteristics, of organisms rather than their species. Although used in ecological research for several decades, this approach only emerged in ecological modelling about twenty years ago. We review this rise of trait-based models and trace the occasional transfer of trait-based modelling concepts between terrestrial plant ecology, animal and microbial ecology, and aquatic ecology. Trait-based models have a variety of purposes, such as predicting changes in species distribution patterns under climate and land-use change, planning and assessing conservation management, or studying invasion processes. In modelling, trait-based approaches can reduce technical challenges such as computational limitations, scaling problems, and data scarcity. However, we note inconsistencies in the current usage of terms in trait-based approaches and these inconsistencies must be resolved if trait-based concepts are to be easily exchanged between disciplines. Specifically, future trait-based models may further benefit from incorporating intraspecific trait variability and addressing more complex species interactions. We also recommend expanding the combination of trait-based approaches with individual-based modelling to simplify the parameterization of models, to capture plant-plant interactions at the individual level, and to explain community dynamics under global change.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253704
Author(s):  
Aimee E. Nicholson-Jack ◽  
Joanna L. Harris ◽  
Kirsty Ballard ◽  
Katy M. E. Turner ◽  
Guy M. W. Stevens

Despite being among the largest and most charismatic species in the marine environment, considerable gaps remain in our understanding of the behavioural ecology of manta rays (Mobula alfredi, M. birostris). Manta rays are often sighted in association with an array of smaller hitchhiker fish species, which utilise their hosts as a sanctuary for shelter, protection, and the sustenance they provide. Species interactions, rather than the species at the individual level, determine the ecological processes that drive community dynamics, support biodiversity and ecosystem health. Thus, understanding the associations within marine communities is critical to implementing effective conservation and management. However, the underlying patterns between manta rays, their symbionts, and other hitchhiker species remain elusive. Here, we explore the spatial and temporal variation in hitchhiker presence with M. alfredi and M. birostris throughout the Maldives and investigate the factors which may influence association using generalised linear mixed effects models (GLMM). For the first time, associations between M. alfredi and M. birostris with hitchhiker species other than those belonging to the family Echeneidae are described. A variation in the species of hitchhiker associated with M. alfredi and M. birostris was identified, with sharksucker remora (Echeneis naucrates) and giant remora (Remora remora) being the most common, respectively. Spatiotemporal variation in the presence of manta rays was identified as a driver for the occurrence of ephemeral hitchhiker associations. Near-term pregnant female M. alfredi, and M. alfredi at cleaning stations, had the highest likelihood of an association with adult E. naucrates. Juvenile E. naucrates were more likely to be associated with juvenile M. alfredi, and a seasonal trend in E. naucrates host association was identified. Remora were most likely to be present with female M. birostris, and a mean number of 1.5 ± 0.5 R. remora were observed per M. birostris. It is hoped these initial findings will serve as the basis for future work into the complex relationships between manta rays and their hitchhikers.


1993 ◽  
Vol 23 (10) ◽  
pp. 2180-2193 ◽  
Author(s):  
Pu Mou ◽  
Robert J. Mitchell ◽  
Robert H. Jones

Ecological field theory, unlike many other vegetation modeling approaches, provides a basis to construct an individually based, spatially explicit, and resource-mediated model for mechanistic simulation of plant–plant interactions and vegetation dynamics. The model REGROW has been developed, based on ecological field theory principles, to simulate vegetation dynamics for northern hardwood forests. Using data from a current study of a southern pine system to calibrate a modified version of this model, SPGROW, we simulated growth of individuals for the first growing season in stands of loblolly pine (Pinustaeda L.) and sweetgum (Liquidambarstyraciflua L.) seedlings and loblolly pine seedling–sweetgum sprout mixtures. SPGROW accurately simulated stand development at population and stand levels. However, less agreement occurred at the individual level between simulated and field survey values, possibly owing to lack of data on site heterogeneity and genetic variation. Plant interactions, which altered resource availability (light, water, and nutrients) to individual plants, played a major role in differentiating plant size in the model. Given its unique model structure and simulation accuracy, SPGROW has the potential to provide very detailed insight into the mechanisms of plant–plant interactions.


2020 ◽  
Vol 117 (37) ◽  
pp. 22858-22865 ◽  
Author(s):  
Vigdis Vandvik ◽  
Olav Skarpaas ◽  
Kari Klanderud ◽  
Richard J. Telford ◽  
Aud H. Halbritter ◽  
...  

Generality in understanding biodiversity responses to climate change has been hampered by substantial variation in the rates and even directions of response to a given change in climate. We propose that such context dependencies can be clarified by rescaling climate gradients in terms of the underlying biological processes, with biotic interactions as a particularly important process. We tested this rescaling approach in a replicated field experiment where entire montane grassland communities were transplanted in the direction of expected temperature and/or precipitation change. In line with earlier work, we found considerable variation across sites in community dynamics in response to climate change. However, these complex context dependencies could be substantially reduced or eliminated by rescaling climate drivers in terms of proxies of plant−plant interactions. Specifically, bryophytes limited colonization by new species into local communities, whereas the cover of those colonists, along with bryophytes, were the primary drivers of local extinctions. These specific interactions are relatively understudied, suggesting important directions for future work in similar systems. More generally, the success of our approach in explaining and simplifying landscape-level variation in climate change responses suggests that developing and testing proxies for relevant underlying processes could be a fruitful direction for building more general models of biodiversity response to climate change.


Author(s):  
Michel Loreau

Community ecology and ecosystem ecology provide two perspectives on complex ecological systems that have largely complementary strengths and weaknesses. Merging the two perspectives is necessary both to ensure continued scientific progress and to provide society with the scientific means to face growing environmental challenges. Recent research on biodiversity and ecosystem functioning has contributed to this goal in several ways. By addressing a new question of high relevance for both science and society, by challenging existing paradigms, by tightly linking theory and experiments, by building scientific consensus beyond differences in opinion, by integrating fragmented disciplines and research fields, by connecting itself to other disciplines and management issues, it has helped transform ecology not only in content, but also in form. Creating a genuine evolutionary ecosystem ecology that links the evolution of species traits at the individual level, the dynamics of species interactions, and the overall functioning of ecosystems would give new impetus to this much-needed process of unification across ecological disciplines. Recent community evolution models are a promising step in that direction.


<em>Abstract</em>.—Long-distance dispersal (LDD; relatively infrequent displacements occupying the tails of the dispersal kernel) and habitat connectivity (the degree to which the landscape facilitates or impedes movement among resource patches) influence many important ecological processes. These processes include population spread and redistribution, regulation of local and regional population dynamics, colonization of newly available habitats, maintenance of diversity in variable environments, and transfer of energy and nutrients. Field studies have shown that both LDD and instream barriers can have marked effects on the distribution patterns and demographic isolation of stream fishes at various spatial scales. Traditional summary measures of spatial use at the individual level, such as home ranges, have limited utility for examining the effects of connectivity in the presence of LDD or instream barriers; however, simple models can be tailored to extract and synthesize this information efficiently. This study presents a modeling framework for quantifying LDD of marked fish as well as their movements in the presence of barriers of differing porosity or permeability. Simulations are used to illustrate the feasibility of the modeling approach and explore sample size and spatial scale requirements. Comparison of model parameters across systems, species, and time periods should provide insights into the contribution of movement to structuring fish communities in riverine landscapes. The proposed framework can help improve on methods currently used (e.g., to quantify characteristic scales of habitat use by using median displacements or other appropriate percentile measures instead of home ranges and to relate fish movements to environmental or individual predictors by robust analyses based on heavy-tailed rather than simple normal distributions).


1969 ◽  
Vol 26 (6) ◽  
pp. 1415-1428 ◽  
Author(s):  
Eric L. Mills

The community concept has had a long, complex history in plant and animal ecology. Divergent views about the nature of communities have been most marked in plant ecology: the Zurich–Montpellier school regarded plant communities as largely abstract, based on a mosaic of vegetation, whereas the Uppsala school and other northern plant ecologists regarded communities as concrete, quantifiable units. The analogy between communities and organisms has been used often, particularly in American dynamic ecology, although the analogy can only be a loose one. Communities have also been regarded as abstractions from independent continuous distributions of the individual species. This idea has been used in recent gradient analysis of plant communities.Similar and equally variant ideas have been used in marine zoology. Many studies in marine ecology have been based on Möbius' concept of the biocoenosis, or on Petersen's use of dominant or conspicuous index species, with added theoretical notions which apparently originated in plant ecology. New evidence is presented that some marine benthic communities may be characterized in terms of dominants while also allowing analysis as parts of continua of distribution along gradients. In addition, although stability usually increases as communities evolve, some types are intrinsically unstable because of the activities of the organisms themselves, rather than because of changes in the physical environment alone.Because there are different kinds of marine "communities" a single rigorous definition seems impossible. A definition is proposed which avoids theoretical suppositions about community dynamics to allow the variety of phenomena in community relations to be investigated in a relatively unbiased way.


Author(s):  
Ciro Cabal ◽  
Ricardo Martínez-García ◽  
Fernando Valladares

Ecologists use the net biotic interactions among plants as a major factor to predict other ecosystem features, such as species diversity, community structure, or plant atmospheric carbon uptake. By adopting this approach, ecologists have built a giant body of theory founded on observational evidence. However, growing evidence points out that this may not be the right approach. The literature addressing the biophysical mechanisms underlying the plant interactions is much scarcer. A rising number of scientists claim the need for a mechanistic understanding of plant interactions due to the limitations that a phenomenological approach raises both in empirical and theoretical studies. Scattered studies have recently taken such a mechanistic approach, but we still lack a general theoretical framework to study mechanistically plant interactions. In this review, we first recapitulate the elementary units of plant interactions, i.e., all the known biophysical processes affected by the presence of an influencing plant and the possible phenotypic responses of plants influenced by those processes. Second, we discuss how a net interaction between two plants emerges from the simultaneous effect of these elementary units. Third, we touch upon the spatial and temporal variability of the net interaction and discuss the links between this variability and the underlying biophysical processes. We conclude by discussing how to integrate these processes into a mechanistic framework for plant interactions that must necessarily focus on the individual scale and explicitly incorporate the spatial structure of the community and environmental factors: the plant interaction models (PIM). A PIM incorporates a pair or few plants interacting with their physical environment so that the biotic interaction is not imposed but emerges from the model. This type of model can provide concise, mechanistic hypotheses to be tested empirically. This review calls for a paradigm shift in the ecology of plant interactions, from the classic species interaction study towards a more mechanistic individual-level approach. It also presents a comprehensive foundation for studying the mechanisms underpinning the net interaction between two plants.


2007 ◽  
Vol 362 (1488) ◽  
pp. 2307-2331 ◽  
Author(s):  
Steven L Chown ◽  
Peter Convey

Antarctica and its surrounding islands lie at one extreme of global variation in diversity. Typically, these regions are characterized as being species poor and having simple food webs. Here, we show that terrestrial systems in the region are nonetheless characterized by substantial spatial and temporal variations at virtually all of the levels of the genealogical and ecological hierarchies which have been thoroughly investigated. Spatial variation at the individual and population levels has been documented in a variety of genetic studies, and in mosses it appears that UV-B radiation might be responsible for within-clump mutagenesis. At the species level, modern molecular methods have revealed considerable endemism of the Antarctic biota, questioning ideas that small organisms are likely to be ubiquitous and the taxa to which they belong species poor. At the biogeographic level, much of the relatively small ice-free area of Antarctica remains unsurveyed making analyses difficult. Nonetheless, it is clear that a major biogeographic discontinuity separates the Antarctic Peninsula and continental Antarctica, here named the ‘Gressitt Line’. Across the Southern Ocean islands, patterns are clearer, and energy availability is an important correlate of indigenous and exotic species richness, while human visitor numbers explain much of the variation in the latter too. Temporal variation at the individual level has much to do with phenotypic plasticity, and considerable life-history and physiological plasticity seems to be a characteristic of Antarctic terrestrial species. Environmental unpredictability is an important driver of this trait and has significantly influenced life histories across the region and probably throughout much of the temperate Southern Hemisphere. Rapid climate change-related alterations in the range and abundance of several Antarctic and sub-Antarctic populations have taken place over the past several decades. In many sub-Antarctic locations, these have been exacerbated by direct and indirect effects of invasive alien species. Interactions between climate change and invasion seem set to become one of the most significant conservation problems in the Antarctic. We conclude that despite the substantial body of work on the terrestrial biodiversity of the Antarctic, investigations of interactions between hierarchical levels remain scarce. Moreover, little of the available information is being integrated into terrestrial conservation planning, which lags far behind in this region by comparison with most others.


Ecosistemas ◽  
2021 ◽  
Vol 30 (1) ◽  
pp. 2186
Author(s):  
Francisco I. Pugnaire ◽  
Gianalberto Losapio ◽  
Christian Schöb

The effects of global warming are stronger in high-elevation environments than elsewhere. Here, we review recent advances in alpine plant ecology with a focus on dry mountain ranges, mainly in Mediterranean-type climate, with a global change perspective. Raising temperatures and changes in precipitation influence both plant growth and reproduction, and therefore the spatial distribution of species. Research in high-elevation systems evidenced that plant–plant interactions involving cushion plants play a crucial role in the assembly of plant communities, influencing species richness, genetic and phylogenetic diversity, and species persistence. By buffering environmental extremes and ameliorating biophysical conditions, cushion plant species acting as ecosystem engineers are fundamental in the response of alpine ecosystems to global warming, mitigating negative impacts on different plant species with narrow niche and small distribution range.


Sign in / Sign up

Export Citation Format

Share Document