Water-stress tolerance of black and eastern cottonwood clones and four hybrid progeny. I. Growth, water relations, and gas exchange

1994 ◽  
Vol 24 (2) ◽  
pp. 364-371 ◽  
Author(s):  
T.J. Tschaplinski ◽  
G.A. Tuskan ◽  
C.A. Gunderson

Water-stress tolerance of six clones in a pedigree consisting of black cottonwood (Populustrichocarpa Torr. & Gray, female) and eastern cottonwood (Populusdeltoides Bartr., male) parental clones and four hybrid progeny was investigated. Trees were grown outdoors in pots; well-watered trees were kept moist (soil water potential greater than −0.03 MPa), and stressed trees (soil water potential less than −2.0 MPa) were subjected to repeated cyclical stress of 1 or 2 days duration over the 14-week study. Male P. deltoides and the male clone 242 displayed the greatest degree of stress tolerance, as evidenced by greater osmotic adjustment at saturation (0.25 MPa) and maintenance of relative growth rate of the main stem under water stress at 100 and 69% of that of well-watered trees, respectively, compared with reductions to 50–58% for the other hybrid clones. However, differences in total plant dry weight under water stress were less obvious, with female clones allocating more carbon to branch production under well-watered conditions, which was further increased under water stress. Three of the four hybrids displayed some degree of osmotic adjustment at saturation after bud set, which was likely conferred by male P. deltoides. Screening clones of Populus for drought tolerance should take into account the segregating tendency of hybrids to allocate carbon to lateral meristems under stress.

1994 ◽  
Vol 24 (4) ◽  
pp. 681-687 ◽  
Author(s):  
T.J. Tschaplinski ◽  
G.A. Tuskan

The biochemical bases of water-stress tolerance in a pedigree consisting of black cottonwood (Populustrichocarpa Torr. & Gray female) and eastern cottonwood (Populusdeltoides Bartr. male) parental clones and four hybrid progeny were investigated. Trees were grown outdoors in pots; well-watered trees (soil water potential greater than −0.03 MPa) were kept moist in trays, and stressed trees (soil water potential less than −2.0 MPa) were subjected to repeated cyclical stress of 1 or 2 days duration over the 14-week study. Analysis of the major metabolites and ions in fully expanded leaves demonstrated that the greatest degree of osmotic adjustment was displayed by male hybrid 242, the P. deltoides male parent, and male hybrid 239 to a lesser extent. Osmotic adjustment in leaves of both hybrid 242 and the P. deltoides male parent was primarily constituted by malic acid, K, sucrose, and glucose, with the same metabolites also increasing in fine roots of hybrid 242, the only clone to display osmotic adjustment in roots. Female clone 240 and P. deltoides displayed organic solute-based adjustments to water stress that were offset by declines in inorganic ions, particularly Na and Mg. Given that the P. trichocarpa female parent did not display osmotic adjustment in either tissue, the hybrids' capacity for adjustment was likely conferred by the P. deltoides male parent.


Author(s):  
Ansary Edris Moftah ◽  
Abdul-Rahman Ibrahim AL-Humaid

Six-month-old buttonwood (Conocarpus erectus L.) seedlings were grown in containers under different soil water potentials (Ψsoil). The objective of the work was: 1) to determine the minimum soil water potential at which Conocarpus trees can survive and grow fairly well, 2) to study the soil-plant water relationship at different irrigation regimes, and 3) to examine the capacity of Conocarpus seedlings for osmotic adjustment via solute accumulation. Seedling growth was not affected significantly at soil water potential above –0.1 MPa (between 40 and 30% Field Capacity (FC). At lowerΨsoil, plant height, leaf area and shoot and root dry weights became disrupted by water deficit. Water stress decreased the osmotic potential (Ψπ) of leaves and roots. Leaves tended to osmoregulate their cell sap through osmotic adjustment processes as their content of soluble sugars increased. The positive survival under low Ψsoil could be related to increased osmotic adjustment. Ψsoil values were found to be more useful than FC values to estimate water requirements and use over an extended period of time, for plants grown under different soil types and different environmental conditions. Conocarpus seedlings can withstand reasonable water stress and can survive at moderately low water potential but, in contrast to other studies, this can not be classified as a high drought tolerant or resistant species. 


1984 ◽  
Vol 102 (2) ◽  
pp. 415-425 ◽  
Author(s):  
M. McGowan ◽  
P. Blanch ◽  
P. J. Gregory ◽  
D. Haycock

SummaryShoot and root growth and associated leaf and soil water potential relations were compared in three consecutive crops of winter wheat grown in the same field. Despite a profuse root system the crop grown in the second drought year (1976) failed to dry the soil as throughly as the crops in 1975 and 1977. Measurements of plant water potential showed that the restricted utilization of soil water reserves by this crop was associated with failure to make any significant osmotic adjustment, leading to premature loss of leaf turgor and stomatal closure. The implications of these results for models to estimate actual crop evaporation from values of potential evaporation are discussed.


1989 ◽  
Vol 67 (6) ◽  
pp. 1681-1688 ◽  
Author(s):  
T. J. Tschaplinski ◽  
T. J. Blake

Organic solute concentrations of five hybrid poplar cultivars were compared to determine the relationship between water-stress tolerance, tissue solute concentration, and growth rate under field conditions. In the expanding foliage of the faster growing Populus deltoides Bartr. × P. balsamifera L. (Jackii 4), the saturated osmotic potential and turgor loss point osmotic potential were 0.18 MPa and 0.47 MPa lower, respectively, than in the slower growing P. deltoides × P. balsamifera (Jackii 7). The expanding foliage of Jackii 4 had higher (ca. 50%) concentrations of organic solutes, attributable mainly to salicyl alcohol, salicin, sucrose, and an unidentified compound. The coupling of high productivity and stress tolerance in Jackii 4 suggests that these may be compatible rather than competing attributes. Water-stress studies on P. deltoides Bartr. × P. nigra L. (DN 22) under greenhouse conditions demonstrated that stressed trees accumulated 4 times the soluble sugar concentrations of well-watered trees, lowering the saturated osmotic potential by 0.55 MPa and turgor loss point osmotic potential by 1.0 MPa. Leaves were the primary site of osmotic adjustment to water stress and roots showed no adjustment. The use of repeated drying cycles in planting stock may aid survival of postplanting stress in species capable of osmotic adjustment. The relationship between stress tolerance and solute concentrations in the greenhouse water-stress study paralleled that of the field study.


2021 ◽  
Vol 25 (3) ◽  
pp. 1411-1423 ◽  
Author(s):  
Xiangyu Luan ◽  
Giulia Vico

Abstract. Crop yield is reduced by heat and water stress and even more when these conditions co-occur. Yet, compound effects of air temperature and water availability on crop heat stress are poorly quantified. Existing crop models, by relying at least partially on empirical functions, cannot account for the feedbacks of plant traits and response to heat and water stress on canopy temperature. We developed a fully mechanistic model, coupling crop energy and water balances, to determine canopy temperature as a function of plant traits, stochastic environmental conditions, and irrigation applications. While general, the model was parameterized for wheat. Canopy temperature largely followed air temperature under well-watered conditions. But, when soil water potential was more negative than −0.14 MPa, further reductions in soil water availability led to a rapid rise in canopy temperature – up to 10 ∘C warmer than air at soil water potential of −0.62 MPa. More intermittent precipitation led to higher canopy temperatures and longer periods of potentially damaging crop canopy temperatures. Irrigation applications aimed at keeping crops under well-watered conditions could reduce canopy temperature but in most cases were unable to maintain it below the threshold temperature for potential heat damage; the benefits of irrigation in terms of reduction of canopy temperature decreased as average air temperature increased. Hence, irrigation is only a partial solution to adapt to warmer and drier climates.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 837D-837
Author(s):  
Clinton C. Shock ◽  
Erik B.G. Feibert ◽  
Lamont D. Saunders

Six soil water potential irrigation criteria (–12.5 to –100 kPa) were examined to determine levels for maximum onion yield and quality. Soil water potential at 0.2-m depth was measured by tensiometers and granular matrix sensors (Watermark Model 20055, Irrometer Co., Riverside, Calif.). Onions are highly sensitive to small soil water deficits. The crop needs frequent irrigations to maintain small negative soil water potentials for maximum yields. In each of 3 years, yield and bulb size increased with wetter treatments. In 1994, a relatively warm year, onion yield and bulb size were maximized at –12.5 kPa. In 1993, a relatively cool year, onion marketable yield peaked at –37.5 kPa due to a significant increase in rot during storage following the wetter treatments.


1983 ◽  
Vol 100 (3) ◽  
pp. 581-589 ◽  
Author(s):  
J. S. Wallace ◽  
J. A. Clark ◽  
M. McGowan

SUMMARYDiurnal and seasonal changes in the total, osmotic and turgor potentials of winter wheat leaves are compared in two seasons of mild and severe soil water stress. Gradients of total water potential in the soil-plant system are also presented. In both seasons the total water potential of the leaves decreased in parallel with the soil water potential, concurrently leaf osmotic potential also decreased sufficiently to maintain positive leaf turgor potential. Eventually, under severe water stress, soil water potential approached –1·5 MPa and leaf turgor potential tended to zero during the middle of the day.The potential drop across the soil-root system was twice that along the stem. Estimates of the water potential at the root surface varied diurnally and were often lower than the bulk soil water potential. In dry soil plants were unable to equilibrate with the soil water potential overnight. These results are consistent with the existence of significant resistance to water flow across the rhizosphere.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1615
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Ahsan Ul Haq ◽  
Faridah Hanum Ibrahim ◽  
Shazia Afzal ◽  
...  

Mitigating climate change requires the identification of tree species that can tolerate water stress with fewer negative impacts on plant productivity. Therefore, the study aimed to evaluate the water stress tolerance of young saplings of C. erectus and M. alba under three soil water deficit treatments (control, CK, 90% field capacity, FC, medium stress MS, 60% FC and high stress, HS, 30% FC) under controlled conditions. Results showed that leaf and stem dry weight decreased significantly in both species under MS and HS. However, root dry weight and root/shoot ratio increased, and total dry weight remained similar to CK under MS in C. erectus saplings. Stomatal conductance, CO2 assimilation rate decreased, and intrinsic water use efficiency increased significantly in both species under MS and HS treatments. The concentration of hydrogen peroxide, superoxide radical, malondialdehyde and electrolyte leakage increased in both the species under soil water deficit but was highest in M. alba. The concentration of antioxidative enzymes like superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase also increased in both species under MS and HS but was highest in C. erectus. Therefore, results suggest that C. erectus saplings depicted a better tolerance to MS due to an effective antioxidative enzyme system.


2020 ◽  
Author(s):  
Xiangyu Luan ◽  
Giulia Vico

Abstract. Crop yield is reduced by heat and water stress, and even more when they co-occur. Yet, compound effects of air temperature and water availability on crop heat stress are poorly quantified: crop models, by relying at least partially on empirical functions, cannot account for the feedbacks of plant traits and response to heat and water stress on canopy temperature. We developed a fully mechanistic model coupling crop energy and water balances, to determine canopy temperature as a function of plant traits, stochastic environmental conditions and their variability; and irrigation applications. While general, the model was parameterized for wheat. Canopy temperature largely followed air temperature under well-watered conditions; but when soil water potential was more negative than −0.14 MPa, further reductions in soil water availability led to a rapid rise in canopy temperature – up to 10 °C warmer than air at soil water potential of −0.62 MPa. More intermittent precipitation led to higher canopy temperatures and longer periods of potentially damaging crop canopy temperatures. Irrigation applications aimed at keeping crops under well-watered conditions could reduce canopy temperature, but in most cases were unable to maintain it below the threshold temperature for potential heat damage; the benefits of irrigation became smaller as average air temperature increased. Hence, irrigation is only a partial solution to adapt to warmer and drier climates.


2020 ◽  
Author(s):  
Jaideep Joshi ◽  
Ulf Dieckmann ◽  
Iain Colin Prentice

<p>Increasing frequencies and intensities of droughts are projected for many regions of the Earth. Water stress leads to a decline in the gross primary productivity (GPP) of plants. Plant responses to water stress vary with timescale, and plants adapted to different environments differ in their responses. Here, we present a unified theory of plant photosynthesis and plant hydraulics, which explains a wide range of observed plant responses to developing water stress.</p><p>Our theory is based on the least-cost hypothesis of Prentice et al. (2014). By integrating plant hydraulics into the least-cost framework, we attempt to improve upon the model of GPP by Wang et al. (2017), which accurately predicts the responses of global GPP to temperature, elevation, and vapour pressure deficit, but overestimates GPP under water-stressed conditions. Our model has three key ingredients. (1) The aforementioned least-cost framework, in which optimal stomatal conductance minimizes the summed costs of maintaining transpiration, the photosynthetic machinery, and the hydraulic pathways, including the potential costs of repairing embolized xylem. We also test a closely related maximum-benefit framework, in which optimal stomatal conductance maximizes the net benefit from assimilation while accounting for these summed costs, and obtain comparable results. (2) A trait-dependent model of water flow through the plant stem, in which water flow is limited by the conductivity (K<sub>s</sub>) and embolism resistance (P<sub>50</sub>) of the hydraulic pathway. At the shortest timescale, water stress causes stomatal closure to an extent that the transpiration demand determined by the vapour pressure deficit at the leaf surface is matched by the water supply through the stem. (3) A short-term response of photosynthetic capacity (V<sub>cmax</sub>) to soil moisture, through which the potential V<sub>cmax</sub> acclimates to prevailing daytime conditions to equalize carboxylation-limited and electron-transport-limited photosynthesis rates (A<sub>c</sub> and A<sub>j</sub>), while the realized values of V<sub>cmax</sub>, A<sub>c</sub>, and A<sub>j</sub> are reduced from their potential values by a factor dependent on the leaf water potential and the leaf embolism resistance.</p><p>We estimate the parameters of our model using published data from short-term and long-term dry-down experiments. The key predictions of our model are as follows: (1) GPP declines with decreasing soil water potential and drops to zero soon after the soil water potential crosses P<sub>50</sub>; (2) soil-to-leaf water potential difference remains relatively constant under developing water stress; (3) functional forms describing the declines in stomatal conductance, V<sub>cmax</sub>, and GPP with soil water potential are consistent with observations; and (4) decreased photosynthetic capacity (V<sub>cmax</sub>) recovers (in the long term) if the plant increases its Huber value (e.g., by shedding leaves), increases its conductivity (e.g., by growing wider new vessels), or decreases its height growth (e.g., by reducing allocation to growth). Our theory provides a potential way of integrating trait-based responses of plants to water stress into global vegetation models, and should therefore help to improve predictions of the global carbon and water cycles in a changing environment.</p><p>References: [1] Prentice IC, et al. <em>Ecology letters</em> 17.1 (2014): 82-91.  [2] Wang H, et al. <em>Nature Plants</em> 3.9 (2017): 734.</p>


Sign in / Sign up

Export Citation Format

Share Document