Effect of alcohol on thermal balance of man in cold water

1979 ◽  
Vol 57 (8) ◽  
pp. 860-865 ◽  
Author(s):  
G. R. Fox ◽  
J. S. Hayward ◽  
G. N. Hobson

The effects of alcohol on core cooling rates (rectal and tympanic), skin temperatures, and metabolic rate were determined for 10 subjects rendered hypothermic by immersion for 45 min in 10 °C water. Experiments were duplicated with and without a 20-min period of exercise at the beginning of cold water immersion. Measurements were continued during rewarming in a hot bath. With blood alcohol concentrations averaging 82 mg 100 mL−1, core cooling rates and changes in skin temperatures were insignificantly different from controls, even if the exercise period was imposed. Alcohol reduced shivering metabolic rate by an overall mean of 13%, insufficient to affect cooling rate. Alcohol had no effect on metabolic rate during exercise. During rewarming by hot bath, the amount of 'afterdrop' and rate of increase in core temperature were unaffected by alcohol. It was concluded that alcohol in a moderate dosage does not influence the rate of progress into hypothermia or subsequent, efficient rewarming. This emphasizes that the high incidence of alcohol involvement in water-related fatalities is due to alcohol potentiation of accidents rather than any direct effects on cold water survival, although very high doses of alcohol leading to unconsciousness would increase rate of progress into hypothermia.

2015 ◽  
Vol 50 (8) ◽  
pp. 792-799 ◽  
Author(s):  
Kevin C. Miller ◽  
Erik E. Swartz ◽  
Blaine C. Long

Context Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. Objective To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Design Crossover study. Setting Laboratory. Patients or Other Participants A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m2). Intervention(s) Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Main Outcome Measure(s) Time to cool from 39.5°C to 38.0°C and Trec. Results The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = −2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min−1 ± 0.12°C·min−1 in full uniform and 0.23°C·min−1 ± 0.11°C·min−1 in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). Conclusions We speculate that higher skin temperatures before CWI, less shivering, and greater conductive cooling explained the faster cooling in full uniform. Cooling rates were considered ideal when the full uniform was worn during CWI, and wearing the full uniform did not cause a greater postimmersion hypothermic afterdrop. Clinicians may immerse football athletes with hyperthermia wearing a full uniform without concern for negatively affecting body-core cooling.


2003 ◽  
Vol 28 (8) ◽  
pp. 551-554
Author(s):  
Michael J. Durkot ◽  
Lawrence de Garavilla

2017 ◽  
Vol 52 (10) ◽  
pp. 902-909 ◽  
Author(s):  
Sandra Fowkes Godek ◽  
Katherine E. Morrison ◽  
Gregory Scullin

Context:  Ideal and acceptable cooling rates in hyperthermic athletes have been established in average-sized participants. Football linemen (FBs) have a small body surface area (BSA)-to-mass ratio compared with smaller athletes, which hinders heat dissipation. Objective:  To determine cooling rates using cold-water immersion in hyperthermic FBs and cross-country runners (CCs). Design:  Cohort study. Setting:  Controlled university laboratory. Patients or Other Participants:  Nine FBs (age = 21.7 ± 1.7 years, height = 188.7 ± 4 cm, mass = 128.1 ± 18 kg, body fat = 28.9% ± 7.1%, lean body mass [LBM] = 86.9 ± 19 kg, BSA = 2.54 ± 0.13 m2, BSA/mass = 201 ± 21.3 cm2/kg, and BSA/LBM = 276.4 ± 19.7 cm2/kg) and 7 CCs (age = 20 ± 1.8 years, height = 176 ± 4.1 cm, mass = 68.7 ± 6.5 kg, body fat = 10.2% ± 1.6%, LBM = 61.7 ± 5.3 kg, BSA = 1.84 ± 0.1 m2, BSA/mass = 268.3 ± 11.7 cm2/kg, and BSA/LBM = 298.4 ± 11.7 cm2/kg). Intervention(s):  Participants ingested an intestinal sensor, exercised in a climatic chamber (39°C, 40% relative humidity) until either target core temperature (Tgi) was 39.5°C or volitional exhaustion was reached, and were immediately immersed in a 10°C circulated bath until Tgi declined to 37.5°C. A general linear model repeated-measures analysis of variance and independent t tests were calculated, with P < .05. Main Outcome Measure(s):  Physical characteristics, maximal Tgi, time to reach 37.5°C, and cooling rate. Results:  Physical characteristics were different between groups. No differences existed in environmental measures or maximal Tgi (FBs = 39.12°C ± 0.39°C, CCs = 39.38°C ± 0.19°C; P = .12). Cooling times required to reach 37.5°C (FBs = 11.4 ± 4 minutes, CCs = 7.7 ± 0.06 minutes; P < .002) and therefore cooling rates (FBs = 0.156°C·min−1 ± 0.06°C·min−1, CCs = .255°C·min−1 ± 0.05°C·min−1; P < .002) were different. Strong correlations were found between cooling rate and body mass (r = −0.76, P < .001), total BSA (r = −0.74, P < .001), BSA/mass (r = 0.73, P < .001), LBM/mass (r = 0.72, P < .002), and LBM (r = −0.72, P < .002). Conclusions:  With cold-water immersion, the cooling rate in CCs (0.255°C·min−1) was greater than in FBs (0.156°C·min−1); however, both were considered ideal (≥0.155°C·min−1). Athletic trainers should realize that it likely takes considerably longer to cool large hyperthermic American-football players (>11 minutes) than smaller, leaner athletes (7.7 minutes). Cooling rates varied widely from 0.332°C·min−1 in a small runner to only 0.101°C·min−1 in a lineman, supporting the use of rectal temperature for monitoring during cooling.


2016 ◽  
Vol 51 (6) ◽  
pp. 500-501 ◽  
Author(s):  
Emma A. Nye ◽  
Jessica R. Edler ◽  
Lindsey E. Eberman ◽  
Kenneth E. Games

Reference: Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464−2472. Clinical Questions: Do optimal procedures exist for implementing cold-water immersion (CWI) that yields high cooling rates for hyperthermic individuals? Data Sources: One reviewer performed a literature search using PubMed and Web of Science. Search phrases were cold water immersion, forearm immersion, ice bath, ice water immersion, immersion, AND cooling. Study Selection: Studies were included based on the following criteria: (1) English language, (2) full-length articles published in peer-reviewed journals, (3) healthy adults subjected to exercise-induced hyperthermia, and (4) reporting of core temperature as 1 outcome measure. A total of 19 studies were analyzed. Data Extraction: Pre-immersion core temperature, immersion water temperature, ambient temperature, immersion duration, and immersion level were coded a priori for extraction. Data originally reported in graphical form were digitally converted to numeric values. Mean differences comparing the cooling rates of CWI with passive recovery, standard deviation of change from baseline core temperature, and within-subjects r were extracted. Two independent reviewers used the Physiotherapy Evidence Database (PEDro) scale to assess the risk of bias. Main Results: Cold-water immersion increased the cooling rate by 0.03°C/min (95% confidence interval [CI] = 0.03, 0.04°C/min) compared with passive recovery. Cooling rates were more effective when the pre-immersion core temperature was ≥38.6°C (P = .023), immersion water temperature was ≤10°C (P = .036), ambient temperature was ≥20°C (P = .013), or immersion duration was ≤10 minutes (P < .001). Cooling rates for torso and limb immersion (mean difference = 0.04°C/min, 95% CI = 0.03, 0.06°C/min) were higher (P = .028) than those for forearm and hand immersion (mean difference = 0.01°C/min, 95% CI = −0.01, 0.04°C/min). Conclusions: Hyperthermic individuals were cooled twice as fast by CWI as by passive recovery. Therefore, the former method is the preferred choice when treating patients with exertional heat stroke. Water temperature should be <10°C, with the torso and limbs immersed. Insufficient published evidence supports CWI of the forearms and hands.


2017 ◽  
Vol 26 (3) ◽  
pp. 286-289
Author(s):  
Megan L. Keen ◽  
Kevin C. Miller

Clinical Scenario:Exercise performed in hot and humid environments increases core body temperature (TC). If TC exceeds 40.5°C for prolonged periods of time, exertional heat stroke (EHS) may occur. EHS is a leading cause of sudden death in athletes. Mortality and morbidity increase the longer the patient’s TC remains above 40.5°C; thus, it is imperative to initiate cooling as quickly as possible. Acceptable cooling rates in EHS situations are 0.08–0.15°C/min, while ideal cooling rates are above 0.16°C/min. Cooling vests are popular alternatives for cooling hyperthermic adults. Most vests cover the anterior and posterior torso and have varying numbers of pouches for phase-change materials (eg, gel packs); some vests only use circulating water to cool. While cooling vests offer several advantages (eg, portability), studies demonstrating their effectiveness at rapidly reducing TC in EHS scenarios are limited.Clinical Question:Are TC cooling rates acceptable (ie, >0.08°C/min) when hyperthermic humans are treated with cooling vests postexercise?Summary of Findings:No significant differences in TC cooling rates occurred between cooling vests and no cooling vests. Cooling rates across all studies were ≤0.053°C/min.Clinical Bottom Line:Cooling vests do not provide acceptable cooling rates of hyperthermic humans postexercise and should not be used to treat EHS. Instead, EHS patients should be treated with cold-water immersion within 30 min of collapse to avoid central nervous system dysfunction and organ failure.Strength of Recommendation:Strong evidence (eg, level 2 studies with PEDro scores ≥5) suggests that cooling vests do not reduce TC quickly and thus should not be used in EHS scenarios.


2020 ◽  
pp. 253-260
Author(s):  
Courtney E. Wheelock ◽  
Hayden W. Hess ◽  
Zachary J. Schlader ◽  
Blair D. Johnson ◽  
David Hostler ◽  
...  

Background: Cold-water immersion impairs manual dexterity when finger temperature is below 15˚C. This exposes divers to increased risk of error. We hypothesized that whole-body active heating would maintain finger temperatures and dexterity during cold-water immersion. Methods: Twelve subjects (six males) (22±2 years old; BMI 23.9±2.5; body fat 16±6%) completed 60-minute head-out water immersion (HOWI) wearing a 7mm wetsuit and 3mm gloves in thermoneutral water (TN 25˚C) and cold water (CW 10˚C)while wearing a water-perfused suit (WP) with 37˚C water circulated over the torso, arms, and legs. Gross (Minnesota Manual Dexterity Test [MMDT]) and fine (modified Purdue Pegboard [PPT]) dexterity were assessed before, during and after immersion. Core body and skin temperatures were recorded every 10 minutes. Results: MMDT (TN -25±14%; CW -72±23%; WP -67±29%; p<0.05) and PPT (TN -16±9%; CW: -45±10%; WP: -38±13%; p<0.05) performance decreased during immersion. MMDT and PPT did not differ between CW and WP. Immediately following immersion gross dexterity was recovered in all conditions. Post-immersion fine dexterity was still impaired in CW (p<0.01), but not WP or TN. Core and skin temperatures decreased during immersion in CW and WP (p<0.05) but did not differ between CW and WP. Conclusions: Manual dexterity decreased during immersion. Dexterity was further impaired during cold-water immersion and was not maintained by water perfusion active heating. Warm water perfusion did not maintain finger temperature above 15˚C but hand temperature remained above these limits, suggesting a need to reassess thermal thresholds for working divers in cold-water conditions.


2018 ◽  
Vol 13 (7) ◽  
pp. 917-925 ◽  
Author(s):  
Jessica M. Stephens ◽  
Ken Sharpe ◽  
Christopher Gore ◽  
Joanna Miller ◽  
Gary J. Slater ◽  
...  

Purpose: To examine the effect of postexercise cold-water immersion (CWI) protocols, compared with control (CON), on the magnitude and time course of core temperature (Tc) responses. Methods: Pooled-data analyses were used to examine the Tc responses of 157 subjects from previous postexercise CWI trials in the authors’ laboratories. CWI protocols varied with different combinations of temperature, duration, immersion depth, and mode (continuous vs intermittent). Tc was examined as a double difference (ΔΔTc), calculated as the change in Tc in CWI condition minus the corresponding change in CON. The effect of CWI on ΔΔTc was assessed using separate linear mixed models across 2 time components (component 1, immersion; component 2, postintervention). Results: Intermittent CWI resulted in a mean decrease in ΔΔTc that was 0.25°C (0.10°C) (estimate [SE]) greater than continuous CWI during the immersion component (P = .02). There was a significant effect of CWI temperature during the immersion component (P = .05), where reductions in water temperature of 1°C resulted in decreases in ΔΔTc of 0.03°C (0.01°C). Similarly, the effect of CWI duration was significant during the immersion component (P = .01), where every 1 min of immersion resulted in a decrease in ΔΔTc of 0.02°C (0.01°C). The peak difference in Tc between the CWI and CON interventions during the postimmersion component occurred at 60 min postintervention. Conclusions: Variations in CWI mode, duration, and temperature may have a significant effect on the extent of change in Tc. Careful consideration should be given to determine the optimal amount of core cooling before deciding which combination of protocol factors to prescribe.


1981 ◽  
Vol 59 (8) ◽  
pp. 843-846 ◽  
Author(s):  
T. J. Malkinson ◽  
S. Martin ◽  
P. Simper ◽  
K. E. Cooper

Expired air volumes were measured from a random population of adult male and female human volunteers before and during short-term immersion in either cold (13.53 ± 0.13 °C) or warm (33.18 ± 0.11 °C) water. A statistically significant difference was found in the pulmonary ventilation over the first 4 min of immersion between males and females when immersed in cold water. The swim suits worn could not account for the differences observed. No statistically significant difference in pulmonary ventilation was found between males and females during warm water immersion. A numerically smaller group of volunteers was preheated in a sauna before immersion in cold or warm water and this resulted in an attenuated ventilatory response. In this instance there is no statistically significant difference in ventilation between males and females. Also, in another small group of volunteers, surface and deep skin temperatures were continuously measured before and during immersion in cold water. The rates of change of deep skin temperature between males and females were found to be similar.


2017 ◽  
Vol 52 (8) ◽  
pp. 747-752 ◽  
Author(s):  
Kevin C. Miller ◽  
Tyler Truxton ◽  
Blaine Long

Context:  Cold-water immersion (CWI; 10°C) can effectively reduce body core temperature even if a hyperthermic human is wearing a full American football uniform (PADS) during treatment. Temperate-water immersion (TWI; 21°C) may be an effective alternative to CWI if resources for the latter (eg, ice) are unavailable. Objective:  To measure rectal temperature (Trec) cooling rates, thermal sensation, and Environmental Symptoms Questionnaire (ESQ) scores of participants wearing PADS or shorts, undergarments, and socks (NOpads) before, during, and after TWI. Design:  Crossover study. Setting:  Laboratory. Patients or Other Participants:  Thirteen physically active, unacclimatized men (age = 22 ± 2 years, height = 182.3 ± 5.2 cm, mass = 82.5 ± 13.4 kg, body fat = 10% ± 4%, body surface area = 2.04 ± 0.16 m2). Intervention(s):  Participants exercised in the heat (40°C, 50% relative humidity) on 2 days while wearing PADS until Trec reached 39.5°C. Participants then underwent TWI while wearing either NOpads or PADS until Trec reached 38°C. Thermal sensation and ESQ responses were collected at various times before and after exercise. Main Outcome Measure(s):  Temperate-water immersion duration (minutes), Trec cooling rates (°C/min), thermal sensation, and ESQ scores. Results:  Participants had similar exercise times (NOpads = 38.1 ± 8.1 minutes, PADS = 38.1 ± 8.5 minutes), hypohydration levels (NOpads = 1.1% ± 0.2%, PADS = 1.2% ± 0.2%), and thermal sensation ratings (NOpads = 7.1 ± 0.4, PADS = 7.3 ± 0.4) before TWI. Rectal temperature cooling rates were similar between conditions (NOpads = 0.12°C/min ± 0.05°C/min, PADS = 0.13°C/min ± 0.05°C/min; t12 = 0.82, P = .79). Thermal sensation and ESQ scores were unremarkable between conditions over time. Conclusions:  Temperate-water immersion produced acceptable (ie, &gt;0.08°C/min), though not ideal, cooling rates regardless of whether PADS or NOpads were worn. If a football uniform is difficult to remove or the patient is noncompliant, clinicians should begin water-immersion treatment with the athlete fully equipped. Clinicians should strive to use CWI to treat severe hyperthermia, but when CWI is not feasible, TWI should be the next treatment option because its cooling rate was higher than the rates of other common modalities (eg, ice packs, fanning).


2015 ◽  
Vol 50 (12) ◽  
pp. 1240-1246 ◽  
Author(s):  
Kevin C. Miller ◽  
Blaine C. Long ◽  
Jeffrey Edwards

Context  The National Athletic Trainers' Association and the American College of Sports Medicine have recommended removing American football uniforms from athletes with exertional heat stroke before cold-water immersion (CWI) based on the assumption that the uniform impedes rectal temperature (Trec) cooling. Few experimental data exist to verify or disprove this assumption and the recommendations. Objectives  To compare CWI durations, Trec cooling rates, thermal sensation, intensity of environmental symptoms, and onset of shivering when hyperthermic participants wore football uniforms during CWI or removed the uniforms immediately before CWI. Design  Crossover study. Setting  Laboratory. Patients or Other Participants  Eighteen hydrated, physically active men (age = 22 ± 2 years, height = 182.5 ± 6.1 cm, mass = 85.4 ± 13.4 kg, body fat = 11% ± 5%, body surface area = 2.1 ± 0.2 m2) volunteered. Intervention(s)  On 2 days, participants exercised in the heat (approximately 40°C, approximately 40% relative humidity) while wearing a full American football uniform (shoes; crew socks; undergarments; shorts; game pants; undershirt; shoulder pads; jersey; helmet; and padding over the thighs, knees, hips, and tailbone [PADS]) until Trec reached 39.5°C. Next, participants immersed themselves in water that was approximately 10°C while wearing either undergarments, shorts, and crew socks (NOpads) or PADS without shoes until Trec reached 38°C. Main Outcome Measure(s)  The CWI duration (minutes) and Trec cooling rates (°C/min). Results  Participants had similar exercise times (NOpads = 40.8 ± 4.9 minutes, PADS = 43.2 ± 4.1 minutes; t17 = 2.0, P = .10), hypohydration levels (NOpads = 1.5% ± 0.3%, PADS = 1.6% ± 0.4%; t17 = 1.3, P = .22), and thermal-sensation ratings (NOpads = 7.2 ± 0.3, PADS = 7.1 ± 0.5; P &gt; .05) before CWI. The CWI duration (median [interquartile range]; NOpads = 6.0 [5.4] minutes, PADS = 7.3 [9.8] minutes; z = 2.3, P = .01) and Trec cooling rates (NOpads = 0.28°C/min ± 0.14°C/min, PADS = 0.21°C/min ± 0.11°C/min; t17 = 2.2, P = .02) differed between uniform conditions. Conclusions  Whereas participants cooled faster in NOpads, we still considered the PADS cooling rate to be acceptable (ie, &gt;0.16°C/min). Therefore, if clinicians experience difficulty removing PADS or CWI treatment is delayed, they may immerse fully equipped hyperthermic football players in CWI and maintain acceptable Trec cooling rates. Otherwise, PADS should be removed preimmersion to ensure faster body core temperature cooling.


Sign in / Sign up

Export Citation Format

Share Document