Effects of diltiazem on atrioventricular conduction and arterial blood pressure: correlation with plasma drug concentrations

1984 ◽  
Vol 62 (12) ◽  
pp. 1479-1486 ◽  
Author(s):  
Jean-Paul Clozel ◽  
Jacques Billette ◽  
Gilles Caillé ◽  
Pierre Théroux ◽  
Richard Cartier

Atrial and atrioventricular conduction variables were studied at control and at the end of each of six consecutive 45-min diltiazem administration periods in eight closed chest-anesthetized dogs. Diltiazem was given as a bolus (50 μg/kg, i.v.) followed by an infusion (0.5 μg∙kg−1∙min−1); doses were doubled in subsequent periods. The plasma concentrations, measured by gas–liquid chromatography, ranged from 8 to 1400 ng/mL and correlated strongly with the doses (r = 0.92; p < 0.01). The Wenckebach cycle length, basic conduction time, and functional refractory period of the atrioventricular (AV) node increased proportionally with plasma concentration (respective r = 0.90, 0.89, 0.80; p < 0.01). The minimum mean plasma concentrations affecting these variables significantly were 37, 83, and 175 ng/mL, respectively. Second or third degree AV blocks developed in all dogs for plasma concentrations between 379 and 1400 ng/mL. In four dogs which were given isoproterenol (0.2 μg∙kg−1∙min−1), these blocks disappeared within 1 min. Atrial conduction time and functional refractory period were slightly but significantly shortened by diltiazem with mean plasma concentrations of 175 ng/mL and over. His–Purkinje intervals were not significantly changed by diltiazem. Systolic and diastolic arterial pressures were decreased by diltiazem (r = −0.64, r = −0.79; p < 0.01) starting with a mean plasma concentration of 83 ng/mL. We conclude that AV nodal conduction variables are progressively prolonged with increasing plasma concentrations of diltiazem; plasma concentrations affecting blood pressure and AV nodal variables overlap; and the AV blocks produced by toxic concentrations of diltiazem can be corrected by isoproterenol.

2020 ◽  
Vol 21 (2) ◽  
pp. 126-131
Author(s):  
Bhuvanachandra Pasupuleti ◽  
Vamshikrishna Gone ◽  
Ravali Baddam ◽  
Raj Kumar Venisetty ◽  
Om Prakash Prasad

Background: Clobazam (CLBZ) metabolized primarily by Cytochrome P-450 isoenzyme CYP3A4 than with CYP2C19, Whereas Levetiracetam (LEV) is metabolized by hydrolysis of the acetamide group. Few CYP enzymes are inhibited by Proton Pump Inhibitors (PPIs) Pantoprazole, Esomeprazole, and Rabeprazole in different extents that could affect drug concentrations in blood. The aim of the present study was to evaluate the effect of these PPIs on the plasma concentrations of LEV and CLBZ. Methods: Blood samples from 542 patients were included out of which 343 were male and 199 were female patients and were categorized as control and test. Plasma samples analyzed using an HPLC-UV method. Plasma concentrations were measured and compared to those treated and those not treated with PPIs. One way ANOVA and games Howell post hoc test used by SPSS 20 software. Results: CLBZ concentrations were significantly 10 folds higher in patients treated with Pantoprazole (P=0.000) and 07 folds higher in patients treated with Esmoprazole and Rabeprazole (P=0.00). Whereas plasma concentration of LEV control group has no statistical and significant difference when compared to pantoprazole (P=0.546) and with rabeprazole and esomeprazole was P=0.999. Conclusion: The effect of comedication with PPIs on the plasma concentration of clobazam is more pronounced for pantoprazole to a greater extent when compared to esomeprazole and rabeprazole. When pantoprazole is used in combination with clobazam, dose reduction of clobazam should be considered, or significance of PPIs is seen to avoid adverse effects.


1989 ◽  
Vol 66 (4) ◽  
pp. 1736-1743 ◽  
Author(s):  
L. B. Rowell ◽  
D. G. Johnson ◽  
P. B. Chase ◽  
K. A. Comess ◽  
D. R. Seals

The experimental objective was to determine whether moderate to severe hypoxemia increases skeletal muscle sympathetic nervous activity (MSNA) in resting humans without increasing venous plasma concentrations of norepinephrine (NE) and epinephrine (E). In nine healthy subjects (20–34 yr), we measured MSNA (peroneal nerve), venous plasma levels of NE and E, arterial blood pressure, heart rate, and end-tidal O2 and CO2 before (control) and during breathing of 1) 12% O2 for 20 min, 2) 10% O2 for 20 min, and 3) 8% O2 for 10 min--in random order. MSNA increased above control in five, six, and all nine subjects during 12, 10, and 8% O2, respectively (P less than 0.01), but only after delays of 12 (12% O2) and 4 min (8 and 10% O2). MSNA (total activity) rose 83 +/- 20, 260 +/- 146, and 298 +/- 109% (SE) above control by the final minute of breathing 12, 10, and 8% O2, respectively. NE did not rise above control at any level of hypoxemia; E rose slightly (P less than 0.05) at one time only with both 10 and 8% O2. Individual changes in MSNA during hypoxemia were unrelated to elevations in heart rate or decrements in blood pressure and end-tidal CO2--neither of which always fell. We conclude that in contrast to some other sympathoexcitatory stimuli such as exercise or cold stress, moderate to severe hypoxemia increases leg MSNA without raising plasma NE in resting humans.


2002 ◽  
Vol 96 (2) ◽  
pp. 346-351 ◽  
Author(s):  
Peter Kienbaum ◽  
Thorsten Heuter ◽  
Martin C. Michel ◽  
Norbert Scherbaum ◽  
Markus Gastpar ◽  
...  

Background Mu-opioid receptor blockade by naloxone administered for acute detoxification in patients addicted to opioids markedly increases catecholamine plasma concentrations, muscle sympathetic activity (MSA), and is associated with cardiovascular stimulation despite general anesthesia. The current authors tested the hypothesis that the alpha2-adrenoceptor agonist clonidine (1) attenuates increased MSA during mu-opioid receptor blockade for detoxification, and (2) prevents cardiovascular activation when given before detoxification. Methods Fourteen mono-opioid addicted patients received naloxone during propofol anesthesia. Clonidine (10 microg x kg(-1) administered over 5 min + 5 microg x kg(-1) x h(-1) intravenous) was infused either before (n = 6) or after (n = 6) naloxone administration. Two patients without immediate clonidine administration occurring after naloxone administration served as time controls. Muscle sympathetic activity (n = 8) in the peroneal nerve, catecholamine plasma concentrations (n = 14), arterial blood pressure, and heart rate were assessed in awake patients, during propofol anesthesia before and after mu-opioid receptor blockade, and after clonidine administration. Results Mu-receptor blockade markedly increased MSA from a low activity (burst frequency: from 2 burst/min +/- 1 to 24 +/- 8, means +/- SD). Similarly, norepinephrine (41 pg/ml +/- 37 to 321 +/- 134) and epinephrine plasma concentration (13 pg/ml +/- 6 to 627 +/- 146) significantly increased, and were associated with, increased arterial blood pressure and heart rate. Clonidine immediately abolished both increased MSA (P &lt; 0.001) and catecholamine plasma concentrations (P &lt; 0.001). When clonidine was given before mu-opioid receptor blockade, catecholamine plasma concentrations and hemodynamic variables did not change. Conclusions Administration of the alpha2-adrenoceptor agonist clonidine decreases both increased MSA and catecholamine plasma concentrations observed after mu-opioid receptor blockade for detoxification. Furthermore, clonidine pretreatment prevents the increase in catecholamine plasma concentration that otherwise occurs during mu-opioid receptor blockade.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chiara Tersigni ◽  
Giulia Boiardi ◽  
Lorenzo Tofani ◽  
Elisabetta Venturini ◽  
Carlotta Montagnani ◽  
...  

Abstract Background Low plasma levels of first-line antitubercular drugs can be counted among the main causes of poor response to antitubercular therapy, and therapeutic drug monitoring has been proposed as a method to promote tailored treatments for both child and adult patients. The main aim of the study was to evaluate serum concentrations of isoniazid (INH) and rifampicin (RIF) and to investigate reasons for sub-therapeutic plasma concentrations in order to fix dosages. Methods Children with TB were prospectively enrolled from January to August 2019. Two venous blood samples were collected (the first at least 15 days after the beginning of antitubercular treatment, and the second between 1 and 8 weeks later). Plasma concentrations were determined by a validated high-performance liquid chromatography method. Results In all, 45 children were included. Seventy blood samples for INH plasma concentration were collected between 120 and 240 min after drug intake. Adjusting for dose (mg/kg/day) and time of INH administration, when considering three different age groups (≤ 2 years, 2–12 years, > 12 years), a statistically significant lower INH plasma concentration was observed in younger children compared to the older age groups in the multivariate analysis (p < 0.001 and p < 0.001). A total of 68 blood samples were evaluated for RIF concentrations. Both for INH and RIF a statistically significant lower plasma concentration was also observed in adolescents (p < 0.001). Fifteen children (15/45, 33%) presented drug concentrations under the referral therapeutic range. Conclusions Based on our findings, monitoring patients’ drug plasma concentrations in children under 2 years of age and in adolescents can make treatment more patient-tailored.


1995 ◽  
Vol 79 (1) ◽  
pp. 141-145 ◽  
Author(s):  
G. Ahlborg ◽  
E. Weitzberg ◽  
J. M. Lundberg

The effect of minimal changes in circulating plasma endothelin-1 (ET-1) was studied in 12 healthy subjects receiving either 60 min of ET-1 (0.2 pmol.kg-1.min-1) or physiological saline intravenously. Blood was drawn from arterial, renal, and central hepatic vein catheters. Arterial ET-1-like immunoreactivity (ET-1-LI) increased from 4.7 +/- 0.4 (SE) to 8.6 +/- 1.0 pmol/l during ET-1 infusion. After 10 min, plasma ET-1-LI had increased to 6.12 +/- 0.29 pmol/l. For comparison the plasma ET-1-LI level was 12.9 +/- 4.2 pmol/in five patients with sepsis syndrome. Mean arterial blood pressure rose from 92 +/- 3 to 99 +/- 4 mmHg. Estimated splanchnic and renal blood flows fell by 18 +/- 5 and 10 +/- 3%, respectively, and splanchnic glucose production fell by 42 +/- 6% within 10 min of the ET-1 infusion and differed compared with corresponding control values. Only estimated splanchnic blood flow had increased 60 min after the ET-1 infusion. No change in splanchnic uptake of lactate or glycerol was seen. In conclusion, we suggest that circulating ET-1 with small or no demonstrable change in plasma concentration interferes with vasoactivity and splanchnic glycogenolyses in health and possibly pathophysiological conditions.


1992 ◽  
Vol 262 (2) ◽  
pp. H443-H450
Author(s):  
R. R. Gandhi ◽  
D. R. Bell

Anesthetized rabbits were given an intravenous infusion of saline over a 1-h period to increase transvascular protein transport in skin and skeletal muscle. The infusion rate was adjusted to rapidly decrease the plasma concentration of total protein without increasing mean arterial blood pressure or the venous pressure in the leg. The 1-h clearance for radiolabeled albumin and a set of charge-modified albumins was measured in the heel skin and the gastrocnemius muscle. For both skin and skeletal muscle, the clearance for native albumin during the saline infusion was twice the value for control. The increase in clearance for the most neutral protein was greater than that for native albumin, suggesting that transvascular fluid movement was through a pathway which excludes native albumin. The clearance for cationic albumin increased slightly in skin and did not change in skeletal muscle, indicating that transport of the cationic protein through this pathway is predominantly diffusion. The data were consistent with a two-pore model for transvascular transport of water and proteins and with the increase in water transport through the small pores during the saline infusion.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 694-694
Author(s):  
Christoph P R Klett ◽  
Joey P Granger

P9 The synthesis and secretion of hepatic angiotensinogen is controlled by a complex pattern of physiologic and pathophysiologic mediators including glucocorticoids, estrogens, thyroid hormones, cytokines, glucagon,insulin, and prostaglandins. Since plasma concentrations of angiotensinogen are close to the Michaelis Menten constant, it was hypothesized that changes in angiotensinogen plasma concentrations have an influence on the formation rate of angiotensin I and angiotensin II and, therefore, on blood pressure. To further test this hypothesis we injected purified rat angiotensinogen i.v. in Sprague Dawley rats via the femoral vein. Mean arterial blood pressure was measured after arterial cathederization. Control animals had a mean arterial pressure of 131 ± 2 mm Hg before and after the injection of vehicle (saline). The injection of 0.8, 1,2, and 2.9 mg/kg angiotensinogen caused a dose dependend increase in mean arterial blood pressure of 8 ± 0.4, 19.3 ± 2.1, and 32 ± 2.4 mm Hg, respectively. In contrast, the injection of a purified rabbit anti-rat-angiotensinogen antibody 1.4 mg/kg resulted in a significant decrease in blood pressure (-52 ± 3.2 mmHg). In an attempt to analyze how fast and efficient angiotensinogen production can sense regulatory input and convert into adaptation of secretion rate we determined the transit time (time needed for translation and post-translational modifications) for angiotensinogen in a pulse chase experiment employing 35 [S]-methionine as label in freshly isolated hepatocytes. During the chase periode, after quantitative immunoprecipitation, we determined the transit time for angiotensinogen with 2.5 h which is consistent with the constitutive type of angiotensinogen secretion and the time lag found for plasma concentrations to respond to regulatory mediators. In summary we conclude that variations in angiotensinogen plasma concentrations can result in changes in blood pressure. In contrast to renin known as a tonic regulator for the generation of angiotensin I, angiotensinogen seems to be a factor rather important for long-term control of the basal activity of the renin angiotensin system.


1997 ◽  
Vol 87 (4) ◽  
pp. 779-784 ◽  
Author(s):  
T. J. Gan ◽  
P. S. A. Glass ◽  
S. T. Howell ◽  
A. T. Canada ◽  
A. P. Grant ◽  
...  

Background Subhypnotic doses of propofol possess direct antiemetic properties. The authors sought to determine the plasma concentration of propofol needed to effectively manage postoperative nausea and vomiting. Methods Patients aged 18-70 yr who were classified as American Society of Anesthesiologists physical status 1 or 2 and had surgery during general anesthesia were approached for the study. Only patients who had nausea (verbal rating score &gt; 5 on a 0- to 10-point scale), retching, or vomiting in the postanesthetic care unit participated. Propofol was administered to these patients to achieve target plasma concentrations of 100, 200, 400, and 800 ng/ml using a computer-assisted continuous infusion device. Target concentrations were increased every 15 min until patients described at least a 50% reduction in symptoms on the verbal rating score. An arterial blood sample was obtained at each step. The measured plasma propofol concentrations were used to analyze data. Blood pressure, heart and respiratory rates, arterial blood saturation, sedation score, and overall satisfaction with treatment were recorded. Results Of the 89 patients who consented to the study, 15 patients met entry criteria and were enrolled. Five of these patients also had retching or vomiting when they entered the study. Fourteen patients responded successfully to treatment. One patient did not achieve the required response at plasma concentrations of 830 ng/ml. Hence the success rate for the treatment of postoperative nausea and vomiting was 93%. Among patients who responded, the median plasma concentration associated with an antiemetic response was 343 ng/ml. There was no difference in sedation scores from baseline and no episodes of desaturation. Hemodynamic parameters were stable during the study. Conclusions Propofol is generally efficacious in treating postoperative nausea and vomiting at plasma concentrations that do not produce increased sedation. Simulations indicate that to achieve antiemetic plasma propofol concentrations of 343 ng/ml, a bolus dose of 10 mg followed by an infusion of approximately 10 microg x kg(-1) x min(-1) are necessary.


1994 ◽  
Vol 6 (1) ◽  
pp. 17-37 ◽  
Author(s):  
Dino A Giussani ◽  
John AD Spencer ◽  
Mark A Hanson

The fetus mounts a coordinated cardiovascular response to an insult of acute hypoxaemia which involves neural and endocrine components. During acute hypoxaemia in late pregnancy there is a transient bradycardia, a gradual increase in arterial blood pressure and an increase in heart rate variability. In addition, there is a redistribution of the combined ventricular output favouring the cerebral, myocardial and adrenal circulations by shunting blood away from the peripheral circulations. A component of the increase in peripheral vascular resistance and the increase in arterial blood pressure during acute hypoxaemia is mediated via increases in plasma concentrations of vasoconstrictor hormones such as vasopressin, angiotensin II and neuropeptide Y. Whilst an increase in plasma ACTH and cortisol is also seen during acute hypoxaemia, their contribution to cardiovascular control in fetal sheep is less clear.Evidence has been presented to suggest that a number of these cardiovascular and endocrine responses to acute hypoxaemia are chemorefiex in nature, mediated principally by carotid chemoreceptor afferents. In addition, this reflex may be modifiable in terms of changes in magnitude and gain: first, by an influence of the intrauterine environment during chronic hypoxaemia and second, through genetic influences, in animals adapted to life at high altitude.


Sign in / Sign up

Export Citation Format

Share Document