Comparison of two methods of altering blood pressures for assessing neonatal cerebral blood flow autoregulation

1986 ◽  
Vol 64 (7) ◽  
pp. 1023-1026 ◽  
Author(s):  
B. Y. Ong ◽  
C. MacIntyre ◽  
D. Bose ◽  
R. J. Palahniuk

The cerebral blood flow of newborn lambs at reduced and elevated arterial blood pressures, induced by intravenous infusion of sodium nitroprusside and phenylephrine hydrochloride as well as blood withdrawal and reinfusion, were compared. Both blood withdrawal and sodium nitroprusside infusion reduced mean arterial pressure from 83 to 60 mmHg (1 mmHg = 133 Pa). Reinfusion of blood increased arterial pressure to 94 mmHg. Phenylephrine hydrochloride infusion increased arterial pressure to 102 mmHg. The cerebral blood flows at corresponding arterial pressures were similar (coefficient of correlation = 0.88, P < 0.01). Cerebral blood flow before and after infusion of phenylephrine hydrochloride and sodium nitroprusside into the brain via the carotid artery did not change. The results indicate that blood-borne phenylephrine hydrochloride and sodium nitroprusside, in concentrations that would alter arterial blood pressure significantly from its resting level, do not change cerebral blood flow directly.

1999 ◽  
Vol 276 (4) ◽  
pp. H1253-H1262 ◽  
Author(s):  
Stephen C. Jones ◽  
Carol R. Radinsky ◽  
Anthony J. Furlan ◽  
Douglas Chyatte ◽  
Alejandro D. Perez-Trepichio

The maintenance of constant cerebral blood flow (CBF) as arterial blood pressure is reduced, commonly referred to as CBF-pressure autoregulation, is typically characterized by a plateau until the vasodilatory capacity is exhausted at the lower limit, after which flow falls linearly with pressure. We investigated the effect of cortical, as opposed to systemic, nitric oxide synthase (NOS) inhibition on the lower limit of CBF-pressure autoregulation. Forty-four Sprague-Dawley rats were anesthetized with halothane and N2O in O2. With a closed cranial window placed the previous day in a ventilated and physiologically stable preparation, we determined the CBF using laser-Doppler flowmetry. Animals with low reactivity to inhaled CO2 and suffused ADP or ACh were excluded. Five arterial pressures from 100 to 40 mmHg were obtained with controlled hemorrhagic hypotension under cortical suffusion with artificial cerebrospinal fluid (aCSF) and then again after suffusion for 35 ( n = 5) and 105 min ( n = 10) with aCSF, 10−3 M N ω-nitro-l-arginine (l-NNA; n = 12), or 10−3 M N ω-nitro-d-arginine (d-NNA; n = 5). An additional group ( n = 7) was studied after a 105-min suffusion of l-NNA followed by a single blood withdrawal procedure. The lower limit of autoregulation was identified visually by four blinded reviewers as a change in the slope of the five-point plot of CBF vs. mean arterial blood pressure. The lower limit of 90 ± 4.3 mmHg after 105 min of 1 mMl-NNA suffusion was increased compared with the value in the time-control group of 75 ± 5.3 mmHg ( P < 0.01; ANOVA) and the initial value of 67 ± 3.7 mmHg ( P < 0.001). The lower limit of 84 ± 5.9 mmHg in seven animals with 105 min of suffusion of 1 mM l-NNA without previous blood withdrawal was significantly increased ( P < 0.01) in comparison with 70 ± 1.9 mmHg from those with just aCSF suffusion ( n = 37). No changes in lower limit for the other agents or conditions, including 105 or 35 min of aCSF or 35 min of l-NNA suffusion, were detected. The lack of effect on the lower limit withd-NNA suffusion suggests an enzymatic mechanism, and the lengthyl-NNA exposure of 105 min, but not 35 min, suggests inhibition of a diffusionally distant NOS source that mediates autoregulation. Thus cortical suffusion ofl-NNA raises the lower limit of autoregulation, strongly suggesting that nitric oxide is at least one of the vasodilators active during hypotension as arterial pressure is reduced from normal.


2010 ◽  
Vol 30 (11) ◽  
pp. 1883-1889 ◽  
Author(s):  
Allyson R Zazulia ◽  
Tom O Videen ◽  
John C Morris ◽  
William J Powers

Studies in transgenic mice overexpressing amyloid precursor protein (APP) demonstrate impaired autoregulation of cerebral blood flow (CBF) to changes in arterial pressure and suggest that cerebrovascular dysfunction may be critically important in the development of pathological Alzheimer's disease (AD). Given the relevance of such a finding for guiding hypertension treatment in the elderly, we assessed autoregulation in individuals with AD. Twenty persons aged 75±6 years with very mild or mild symptomatic AD (Clinical Dementia Rating 0.5 or 1.0) underwent 15O-positron emission tomography (PET) CBF measurements before and after mean arterial pressure (MAP) was lowered from 107±13 to 92±9 mm Hg with intravenous nicardipine; 11C-PIB-PET imaging and magnetic resonance imaging (MRI) were also obtained. There were no significant differences in mean CBF before and after MAP reduction in the bilateral hemispheres (−0.9±5.2 mL per 100 g per minute, P=0.4, 95% confidence interval (CI)=−3.4 to 1.5), cortical borderzones (−1.9±5.0 mL per 100 g per minute, P=0.10, 95% CI=−4.3 to 0.4), regions of T2W-MRI-defined leukoaraiosis (−0.3±4.4 mL per 100 g per minute, P=0.85, 95% CI=−3.3 to 3.9), or regions of peak 11C-PIB uptake (−2.5±7.7 mL per 100 g per minute, P=0.30, 95% CI=−7.7 to 2.7). The absence of significant change in CBF with a 10 to 15 mm Hg reduction in MAP within the normal autoregulatory range demonstrates that there is neither a generalized nor local defect of autoregulation in AD.


1985 ◽  
Vol 63 (6) ◽  
pp. 937-943 ◽  
Author(s):  
David J. Boarini ◽  
Neal F. Kassell ◽  
James A. Sprowell ◽  
Julie J. Olin ◽  
Hans C. Coester

✓ Profound arterial hypotension is à commonly used adjunct in surgery for aneurysms and arteriovenous malformations. Hyperventilation with hypocapnia is also used in these patients to increase brain slackness. Both measures reduce cerebral blood flow (CBF). Of concern is whether CBF is reduced below ischemic thresholds when both techniques are employed together. To determine this, 12 mongrel dogs were anesthetized with morphine, nitrous oxide, and oxygen, and then paralyzed with pancuronium and hyperventilated. Arterial pCO2 was controlled by adding CO2 to the inspired gas mixture. Cerebral blood flow was measured at arterial pCO2 levels of 40 and 20 mm Hg both before and after mean arterial pressure was lowered to 40 mm Hg with adenosine enhanced by dipyridamole. In animals where PaCO2 was reduced to 20 mm Hg and mean arterial pressure was reduced to 40 mm Hg, cardiac index decreased 42% from control and total brain blood flow decreased 45% from control while the cerebral metabolic rate of oxygen was unchanged. Hypocapnia with hypotension resulted in small but statistically significant reductions in all regional blood flows, most notably in the brain stem. The reported effects of hypocapnia on CBF during arterial hypotension vary depending on the hypotensive agents used. Profound hypotension induced with adenosine does not eliminate CO2 reactivity, nor does it lower blood flow to ischemic levels in this model, even in the presence of severe hypocapnia.


PEDIATRICS ◽  
1990 ◽  
Vol 85 (5) ◽  
pp. 733-736
Author(s):  
Margot van de Bor ◽  
Frans J. Walther ◽  
Maureen E. Sims

The pharmacologic effects of cocaine are considered to be secondary to an enhancement of the effects of circulating catecholamines. The effect of intrauterine cocaine exposure on the cerebral blood flow velocity was studied in 20 full-term newborn infants whose urine screens were positive for cocaine and in 18 nonexposed healthy full-term newborn infants whose urine screens were negative for cocaine metabolites. On the first day of life, peak systolic, end diastolic, and mean flow velocities in the pericallosal, internal carotid, and basilar arteries and mean arterial blood pressures were significantly greater in infants who had been exposed to cocaine. On day 2, cerebral blood flow velocities and mean arterial blood pressures were similar in exposed and nonexposed infants. The increase in mean arterial blood pressure and in cerebral blood flow velocity on the first day of life indicates a hemodynamic effect of cocaine that may put the infant exposed to cocaine at a greater risk of intracranial hemorrhage.


2022 ◽  
Vol 9 ◽  
Author(s):  
Rachel L. Leon ◽  
Eric B. Ortigoza ◽  
Noorjahan Ali ◽  
Dimitrios Angelis ◽  
Joshua S. Wolovits ◽  
...  

Cerebrovascular pressure autoregulation promotes stable cerebral blood flow (CBF) across a range of arterial blood pressures. Cerebral autoregulation (CA) is a developmental process that reaches maturity around term gestation and can be monitored prenatally with both Doppler ultrasound and magnetic resonance imaging (MRI) techniques. Postnatally, there are key advantages and limitations to assessing CA with Doppler ultrasound, MRI, and near-infrared spectroscopy. Here we review these CBF monitoring techniques as well as their application to both fetal and neonatal populations at risk of perturbations in CBF. Specifically, we discuss CBF monitoring in fetuses with intrauterine growth restriction, anemia, congenital heart disease, neonates born preterm and those with hypoxic-ischemic encephalopathy. We conclude the review with insights into the future directions in this field with an emphasis on collaborative science and precision medicine approaches.


1976 ◽  
Vol 231 (3) ◽  
pp. 929-935 ◽  
Author(s):  
MJ Hernandez-Perez ◽  
DK Anderson

Internal carotid artery blood flow (IFBF) was determined in each of nine Macaca mulatta by means of a flow transducer implanted around an internal carotid artery. The monkeys were lightly anesthetized, intubated, and paralyzed. Normoxia and normocarbia were maintained stable throughout the experiment. ICBF was monitored while mean arterial blood pressure (MABP) was lowered by withdrawal of blood. MABP was kept within the known limits of autoregulation in order not to compromise CBF. Cerebrospinal fluid (CSF) from the cisterna magna was analyzed for pH PCO2, and PO2 before and after a 30-min hypotensive period in which MABP was lowered from 116 +/- 4 to 70 +/- 2 mmHg (mean +/- SE). Corresponding HCO3- concentrations were calculated. The decrease in MABP did not result in a significant reduction in ICBF but elicited a 37% reduction in calculated cerebrovascular resistance, indicating normal autoregulation. Mena CSF pH was not significantly decreased (P less than 0.05); it changed from 7.320 +/- 0.010 to 7.317 +/- 0.010 after the induced hypotensive period. Thus CSF pH does not appear to have a significant role in cerebral blood flow autoregulation.


Neurosurgery ◽  
1987 ◽  
Vol 21 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Iwao Yamakami ◽  
Katsumi Isobe ◽  
Akira Yamaura

Abstract To clarify the effect of intravascular volume expansion on cerebral blood flow (CBF) in patients after subarachnoid hemorrhage (SAH), we performed 55 pairs of regional CBF measurements using the xenon-133 inhalation method before and after volume expansion in 35 patients with ruptured cerebral aneurysms. CBF was calculated as the hemispheric mean value of the initial slope index. To accomplish volume expansion, we transfused 500 ml of 5% human serum albumin in half an hour. After volume expansion with albumin, the hemoglobin value decreased significantly (P &lt; 0.005). Volume expansion did not change the mean arterial blood pressure. During the first 2 weeks after SAH, CBF decreased significantly after volume expansion (P &lt; 0.005). During the 3rd week after SAH and subsequently to the 4th week after SAH, volume expansion produced no change in CBF. In patients with symptomatic vasospasm, CBF decreased significantly after volume expansion (P &lt; 0.005). In patients without symptomatic vasospasm, volume expansion produced no change in CBF. The results of this study suggest that increasing the intravascular volume above normal by volume expansion does not increase CBF or reverse symptomatic vasospasm.


1995 ◽  
Vol 268 (2) ◽  
pp. H569-H575 ◽  
Author(s):  
S. C. Jones ◽  
J. L. Williams ◽  
M. Shea ◽  
K. A. Easley ◽  
D. Wei

Cycling of various cerebral metabolic substances, arterial vascular diameter, and flow has been noted by many workers at a frequency near 0.1 Hz. Suspicion that this phenomenon is dependent on the type of anesthesia led us to investigate the occurrence of cerebral blood flow (CBF) cycling with different anesthetics. Fifteen Sprague-Dawley rats were anesthetized with either pentobarbital (n = 5, 40–50 mg/kg), alpha-chloralose (n = 5, 60 mg/kg), or halothane (n = 5, 1–0.5%). Body temperature was maintained at 37 degrees C. Femoral arterial and venous catheters were placed, and a tracheotomy was performed, permitting artificial ventilation with 30% O2–70% N2. A closed cranial window was formed over a 3-mm diameter craniotomy. Mean arterial pressure (MABP), arterial partial pressures of CO2 and O2 (PaCO2 and PaO2), and pH were controlled and stabilized at normal values. CBF was determined using laser Doppler flowmetry. To induce cycling, MABP was transiently and repeatedly lowered by exsanguination. Fast Fourier analysis of selected 64-s flow recordings (n = 38) was performed. CBF cycling was observed, independent of the type of anesthesia, in all animals. In 36 epochs, cycling was induced when MABP was reduced to a mean pressure of 65 +/- 1.5 mmHg. The mean frequency and amplitude were 0.094 +/- 0.003 Hz and 6.6 +/- 0.5%, respectively. Cycling occurred without blood withdrawal in two epochs. With the use of the blood-withdrawal epochs (n = 36), all three anesthetics shared a common linear slope between amplitude and blood pressure (P < 0.02) and blood pressure change (P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 80
Author(s):  
Alberto Porta ◽  
Francesca Gelpi ◽  
Vlasta Bari ◽  
Beatrice Cairo ◽  
Beatrice De De Maria ◽  
...  

Cerebrovascular control is carried out by multiple nonlinear mechanisms imposing a certain degree of coupling between mean arterial pressure (MAP) and mean cerebral blood flow (MCBF). We explored the ability of two nonlinear tools in the information domain, namely cross-approximate entropy (CApEn) and cross-sample entropy (CSampEn), to assess the degree of asynchrony between the spontaneous fluctuations of MAP and MCBF. CApEn and CSampEn were computed as a function of the translation time. The analysis was carried out in 23 subjects undergoing recordings at rest in supine position (REST) and during active standing (STAND), before and after surgical aortic valve replacement (SAVR). We found that at REST the degree of asynchrony raised, and the rate of increase in asynchrony with the translation time decreased after SAVR. These results are likely the consequence of the limited variability of MAP observed after surgery at REST, more than the consequence of a modified cerebrovascular control, given that the observed differences disappeared during STAND. CApEn and CSampEn can be utilized fruitfully in the context of the evaluation of cerebrovascular control via the noninvasive acquisition of the spontaneous MAP and MCBF variability.


1979 ◽  
Vol 236 (1) ◽  
pp. H157-H164 ◽  
Author(s):  
H. G. Bohlen

This study was designed to determine if a mechanism exists to cause abnormally large number of arterioles to be closed to blood flow in spontaneously hypertensive rats (SHR). The contributions to vessel closure by neural control and constrictor response to norepinephrine were investigated. Normal rats (WKY) and SHR were studied at age 18--20 wk. Their respective mean arterial blood pressures were 100 +/- 4 (SE) and 154 +/- 7 mmHg when anesthetized with 10% urethan and 2% alpha-chloralose (0.6 mg/100 g ip). The number of arterioles open to blood flow was counted in a large portion of the cremasteric muscle before and after denervation. The percent change in control diameter of denervated arterioles was measured during iontophoretic application (2 min) of norepinephrine at dose currents of 10--300 nA. Following denervation, a 22.2 +/- 6.3% (SE) and 61.8 +/- 12 increase in the number of third-order arterioles open to flow occurred in WKY and SHR. The diameters, wall thicknesses, and cross-sectional areas of vessel walls were not significantly (P less than 0.05) different for comparable types of denervated arterioles in WKY and SHR. The percent changes in diameters of arterioles in SHR were 3--5 times greater at all dose currents than for vessels of WKY. These data indicate arteriolar closure occurs with higher incidence in SHR than WKY and is mediated by hyperresponsiveness of arterioles to norepinephrine.


Sign in / Sign up

Export Citation Format

Share Document