Interdigestive intestinal motility in dogs with chronic exclusion of bile from the digestive tract

1987 ◽  
Vol 65 (12) ◽  
pp. 2493-2496 ◽  
Author(s):  
Victor Plourde ◽  
Louise Trudel ◽  
Pierre Poitras

To elucidate the role of bile delivery into the duodenum on the regulation of plasma motilin and on the interdigestive migrating complex, three dogs were operated upon to ligate the main bile duct and divert the biliary flow into the urinary bladder via a Foley catheter. After the operation, despite the chronic diversion of bile from the digestive tract, all animals maintained an excellent health status and exhibited recurrent periods of phase III motor activity migrating from the duodenum to the ileum, which were associated with cyclic increases in plasma motilin. Following the infusion of pooled dog bile (1 mL/min for 10 min) into the duodenum, a premature phase III and a concomitant rise in plasma motilin were observed. These results suggest, that although bile delivery into the duodenum can induce motilin increase in plasma and period of phase III activity in the gut, this phenomenon does not constitute an essential stimulus for the release of motilin and for the induction of the phase III of the interdigestive migrating complex.


Gut ◽  
1999 ◽  
Vol 44 (1) ◽  
pp. 72-76 ◽  
Author(s):  
A Russo ◽  
R Fraser ◽  
K Adachi ◽  
M Horowitz ◽  
G Boeckxstaens

BackgroundNon-cholinergic non-adrenergic neural mechanisms involving nerves containing NO have been shown to modulate smooth muscle in the gastrointestinal tract, and it has been suggested that release from tonic NO inhibition may be important in the regulation of cyclical fasting small intestinal motility.AimsTo evaluate the role of NO mechanisms in the regulation of fasting small intestinal motor activity in humans using a specific NO synthase inhibitor,NG-monomethyl-l-arginine ( l-NMMA).MethodsIn seven healthy male volunteers, duodenal and jejunal pressures were measured for four hours with a nine lumen manometric catheter. Volunteers attended on four separate days on which they received an intravenous infusion of either saline or l-NMMA (0.5, 2, or 4 mg/kg/h) in random order. Intravenous infusions began 10 minutes after completion of phase III of the migrating motor complex (MMC).ResultsThe first episode of phase III activity occurred earlier after infusion of 2 and 4 mg/kg/h l-NMMA than after infusion of 0.5 mg/kg/hl-NMMA or saline (mean (95% confidence interval) 52 (36–68) and 57 (18–97) v 116 (69–193) and 145 (64–226) minutes respectively) with a resultant MMC cycle length of 82 (59–105) and 86 (46–126) v 132 (49–198) and 169 (98–240) minutes respectively. The total number of phase III activities during the four hour recording was increased (p<0.05) by l-NMMA at a dose of 4 mg/kg/h (2 (1–3)) but not at 2 mg/kg/h (1.5 (1–2)) or 0.5 mg/kg/h (1.3 (1–2)) compared with saline (1.3 (0.6–2)). l-NMMA had no effect on the duration, velocity, number of contractions per minute, length of migration, or site of origin of phase III of the MMC. The duration of phase I activity was shorter (p<0.05) with 4 mg/kg/hl-NMMA than with saline (12 (1–23)v 31 (19–44) minutes).ConclusionsThese observations suggest that NO mechanisms play a role in the regulation of fasting small intestinal motor activity in humans.



1988 ◽  
Vol 255 (4) ◽  
pp. G409-G416 ◽  
Author(s):  
T. Matsumoto ◽  
S. K. Sarna ◽  
R. E. Condon ◽  
W. J. Dodds ◽  
N. Mochinaga

We investigated whether the gallbladder has cyclic motor activity similar to that of the stomach, lower esophageal sphincter, and sphincter of Oddi in the fasted state. We found that the canine gallbladder infundibulum exhibited a cyclic burst of short duration (69 +/- 3 s) contractions that were closely associated with phase III activity of the antrum. The cyclic motor activity was sometimes less prominent or absent in the body and the fundus of the gallbladder. The mean period of gallbladder cyclic motor activity was not significantly different from the mean period of phase III activity in the stomach and the duodenum. The cyclic bursts of gallbladder contractions lasted for 21 +/- 2 min. The gallbladder cyclic motor activity started at about the same time as the antral phase III activity, and both of these activities started approximately 12 min earlier than the duodenal phase III activity. In addition to the aforementioned cyclic bursts of contractions, the gallbladder sometimes exhibited long duration (6.4 +/- 0.6 min) contractions that occurred irregularly and unpredictably during the duodenal migrating motor complex cycle. We conclude that during fasting the canine gallbladder has a cyclic motor activity that is temporally related to phase III activity of the stomach and the duodenum. The role of short duration phasic contractions during cyclic motor activity may be to periodically stir gallbladder contents, whereas the long duration contractions may partially empty the gallbladder in the fasted state.



1981 ◽  
Vol 59 (2) ◽  
pp. 173-179 ◽  
Author(s):  
E. E. Daniel ◽  
J. E. T. Fox ◽  
S. M. Collins ◽  
T. D. Lewis ◽  
M. Meghji ◽  
...  

The hypothesis that acid, emptied intermittently from the stomach during fasting, might initiate the duodenal phase of the migrating motor complex was tested in normal human subjects, in addition, the relationship between plasma motilin concentrations and the initiation of migrating motor complexes was examined. Migrating complexes occurred spontaneously in the absence of acid in the duodenal bulb and in the presence of duodenal bulb neutralization with sodium bicarbonate. Thus duodenal bulb acidification is not necessary for initiation of the duodenal phase of the migrating motor complexes. Further-more, cyclical increases in plasma motilin concentrations were not closely correlated with the initiation of the gastric phase of maximal activity of the migrating motor complexes. However, motilin concentrations were decreased significantly following onset of the duodenal phase III. We conclude that neither duodenal acidification nor increases in motilin concentration are necessary to initiate migrating motor complexes in man.



1989 ◽  
Vol 257 (1) ◽  
pp. G30-G40 ◽  
Author(s):  
J. A. Van Lier Ribbink ◽  
M. G. Sarr ◽  
M. Tanaka

This study was designed to determine the effects of transection of all extrinsic and enteric neural continuity to the entire stomach on motility patterns of the stomach and small intestine. Five dogs were subjected to a model of orthotopic autotransplantation of the stomach to achieve an in vivo, "neurally isolated" stomach. Manometric catheters and serosal electrodes were implanted. A cyclic motor pattern occurred during fasting and was closely coordinated temporally with the migrating motor complex (MMC) in the small bowel. The period of the cyclic gastric motor activity did not differ from the period of the MMC in the small intestine [121 +/- 8 vs 124 +/- 10 (means +/- SE) min, P = 0.4], but the periods of both were greater than in control dogs (93 +/- 5 min, P less than 0.05). Tachygastria accounted for 36 +/- 13% of fasting myoelectric activity in the neurally isolated dogs and for less than 1% in control dogs. Plasma concentration of motilin was greatest during the phase III-like gastric motor activity; exogenous motilin induced premature phase III-like activity in the stomach and small intestine. Feeding abolished the cyclic motor activity in the stomach and decreased plasma motilin concentration. These data suggest that hormonal factors, and not extrinsic or intrinsic neural continuity to the stomach, may control both the initiation of a cyclic interdigestive gastric motor pattern and its temporal coordination with motor patterns in the small intestine.



1986 ◽  
Vol 250 (5) ◽  
pp. G570-G574
Author(s):  
S. J. Konturek ◽  
P. J. Thor ◽  
J. Bilski ◽  
W. Bielanski ◽  
J. Laskiewicz

A relationship between duodenal myoelectric or motor activity and exocrine pancreatic secretion as well as plasma gut hormone levels has been investigated in fasted dogs, fed dogs, and dogs that were stimulated with exogenous gut hormones. Pancreatic secretion showed typical periodicity in phase with the myoelectric or motor activity of the duodenum. Fasting pancreatic bicarbonate and protein secretion reached peaks during phase III of the interdigestive migrating motor complex (MMC) cycle that were significantly larger than nadir levels occurring during phase I of the cycle. These fasting bicarbonate and protein peaks reached, respectively, approximately 9 and 30% of the highest postprandial outputs and 4 and 14% of the maximal secretory capacity elicited by secretin or CCK. They were accompanied by a significant rise in plasma motilin, gastrin, and pancreatic polypeptide (PP), but only exogenous motilin given in physiological dose induced motility pattern and pancreatic secretion similar to those observed during phase III. Feeding interrupted both motor and secretory MMC cycle, increased the pancreatic secretion to approximately 40-60% of the maximal secretory capacity, and was accompanied by increments in plasma gastrin, cholecystokinin (CCK), secretin, and PP. None of these hormones applied alone in physiological dose was capable of reproducing the postprandial inhibition of MMC cycles. We conclude that the pancreatic secretion in fasted dogs fluctuates periodically in phase with duodenal motility, but the phase III peak secretory outputs represent only minute fractions of the maximal secretory capacity and can therefore be ignored in regular testing of pancreatic secretion.



Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

Protein kinase C (PKC) isozymes, when activated, are translocated to particulate membrane fractions for transport to the apical membrane surface in a variety of cell types. Evidence of PKC translocation was demonstrated in human megakaryoblastic leukemic cells, and in cardiac myocytes and fibroblasts, using FTTC immunofluorescent antibody labeling techniques. Recently, we reported immunogold localizations of PKC subtypes I and II in toad urinary bladder epithelia, following 60 min stimulation with Mezerein (MZ), a PKC activator, or antidiuretic hormone (ADH). Localization of isozyme subtypes I and n was carried out in separate grids using specific monoclonal antibodies with subsequent labeling with 20nm protein A-gold probes. Each PKC subtype was found to be distributed singularly and in discrete isolated patches in the cytosol as well as in the apical membrane domains. To determine if the PKC isozymes co-localized within the cell, a double immunogold labeling technique using single grids was utilized.



2012 ◽  
Vol 153 (3) ◽  
pp. 83-92
Author(s):  
Sándor Gődény

In Hungary healthcare finance has decreased in proportion with the GDP, while the health status of the population is still ranks among the worst in the European Union. Since healthcare finance is not expected to increase, the number of practicing doctors per capita is continuously decreasing. In the coming years it is an important question that in this situation what methods can be used to prevent further deterioration of the health status of the Hungarian population, and within this is the role of the quality approach, and different methods of quality management. In the present and the forthcoming two articles those standpoints will be summarized which support the need for the integration of quality assurance in the everyday medical practice. In the first part the importance of quality thinking, quality management, quality assurance, necessity of quality measurement and improvement, furthermore, advantages of the quality systems will be discussed. Orv. Hetil., 2012, 153, 83–92.



Sign in / Sign up

Export Citation Format

Share Document