Renal tubular actions of ANF

1991 ◽  
Vol 69 (10) ◽  
pp. 1537-1545 ◽  
Author(s):  
Mark A. Knepper ◽  
Scott P. Lankford ◽  
Yoshio Terada

Many of the earliest investigations of the renal effects of atrial natriuretic factor (ANF) pointed to the glomerulus as a major site of the peptide's action. More recently, there have been many reports showing various effects of ANF on renal tubular epithelia, including collecting ducts, thick ascending limbs of Henle's loop, thin limbs of Henle's loops, and proximal tubules. The purpose of this review is to summarize the evidence for renal tubular actions of ANF and analyze it from the perspective of the specialized functions of the individual nephron segments, addressing the question: can renal tubule effects of ANF play a significant role in the precise day-to-day regulation of renal NaCl and water excretion? Based on these considerations, we propose that long-term renal tubular action of ANF may be distinct from its short-term natriuretic effect. The short-term action of ANF to accelerate salt and water excretion may play a role in the overall response to acute volume overload. This action of ANF appears to be largely due to an ANF-mediated increase in glomerular filtration rate accompanied by a blunting of the tubuloglomerular feedback mechanism, perhaps with some contribution from ANF-mediated inhibition of fluid absorption in the proximal tubule. In contrast, contributions of ANF to the precise day-to-day regulation of salt and water excretion are likely to be chiefly due to ANF-mediated inhibition of NaCl and water absorption in collecting ducts, but may also involve actions of ANF on the loop of Henle.Key words: collecting duct, thick ascending limb, proximal tubule, NaCl transport, water transport.

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 710-710
Author(s):  
Pablo A Ortiz ◽  
Jeffrey L Garvin

P96 NO regulates salt balance by inhibiting NaCl reabsorption along the nephron. In the isolated, perfused rat thick ascending limb (THAL), adding arginine to the bath stimulates endogenous NO production which inhibits NaCl absorption. While we reported the NO-signaling pathway in collecting ducts, it has not been studied in THALs. We hypothesized that endogenous NO inhibits NaCl transport by increasing cGMP production which in turn activates cGMP dependent protein kinase (PKG). THALs from rats were isolated and perfused, and net chloride flux ( J Cl - ) was measured. L-arginine (0.5 mM) added to the bath decreased J Cl - from 154.4±9.9 to 101.9±14.1 a 35.2% decrease ( n =7; p < 0.05). Next we tested the effect of the soluble guanylate gyclase (sGC) inhibitor LY-83583 on L-Arg induced inhibition of J Cl - . In the presence of 10 μM LY-83583 adding L-Arg to the bath did not affect THAL J Cl - (143.7±28.1 vs. 136.7±22.2 pmol mm -1 min -1 ; n =6). 10 μM LY-83583 alone did not affect THAL J Cl - ( n =4). We then tested whether the cGMP-stimulated phosphodiesterase (PDE II) inhibitor EHNA blocked the effects of L-Arg. In the presence of 50 μM EHNA, L-Arg reduced chloride flux by only 11% (146.2±7.3 vs. 129.1±6.8 pmol mm -1 min -1 ; p < 0.06; n =5). 50 μM EHNA alone did not change THAL J Cl - ( n =4). Since cGMP activates PKG as well as PDE II, we tested whether the PKG inhibitor KT-5823 could prevent the L-Arg effect. In the presence of 2 μM KT-5823, L-Arg decreased J Cl - from 132.5±14.1 to 91.1±8.8 pmol mm -1 min -1 , an inhibition of 31% ( n =9; p < 0.05). To determine whether all of the effects of L-arg are mediated by cGMP, we tested its effect on THAL J Cl - in the presence of cGMP. In the presence of 50 μM dibutyryl-cGMP, J Cl - was 116.3±9.7 pmol mm -1 min -1 . After L-Arg was added to the bath, J Cl - was 100.7±8.3 pmol mm -1 min -1 ( n.s ; n =5). We concluded that: 1) NO reduces THAL J Cl - by activating sGC, increasing cGMP and stimulating PDE II which likely decreases cAMP; 2) activation of PKG is not necessary for NO to decrease J Cl - ; 3) the cascade activated by NO in the THAL is different from that activated in the collecting duct.


1989 ◽  
Vol 77 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Shozo Torikai

1. In order to examine the possibility of heterogeneity in the dependence of renal tubular cells upon oxidative phosphorylation and exogenous substrates, the effects of antimycin A and substrate deprivation on adenosine 5′-triphosphate (ATP) content were examined in isolated rat nephron segments in vitro at 37°C. 2. Antimycin A (5 μmol/l) caused varying decrements in cell ATP level within 5 min in the following order: proximal tubules > cortical thick ascending limb of Henle's loop (cTAL) > cortical collecting duct (cCD) in the cortex, and thin descending limb of Henle's loop (TDL) > medullary thick ascending limb of Henle's loop (mTAL) > outer medullary collecting duct (omCD) in the inner stripe of the outer medulla. In the thick ascending limb and the collecting duct, the segments located in the cortex were more sensitive than those in the medulla. 3. Substrate deprivation for 30 min markedly decreased the cell ATP content in cortical and medullary proximal tubules and also in medullary TDL, whereas it caused only a slight decrease in cTAL and mTAL with no change in cCD and omCD. 4. Media made hypertonic by the addition of 200 mmol/l NaCl under aerobic conditions, increased the requirement for exogenous substrates in TDL and mTAL, but not in omCD. This stimulation was seen to a lesser extent in media made hypertonic by the addition of mannitol instead of NaCl. 5. Taking into consideration a knowledge of rat kidney architecture and intrarenal gradient of oxygen partial pressure, it is likely that the observed dependency upon both oxygen and exogenous substrates in the renal tubular cells reflects adaptation of such cells to their anatomical location, and to the availability of those substances in situ. Furthermore, extracellular sodium concentration and osmolarity stimulate metabolic requirements to a different extent among the nephron segments.


2011 ◽  
Vol 301 (5) ◽  
pp. F979-F996 ◽  
Author(s):  
Aurélie Edwards ◽  
Anita T. Layton

We expanded our region-based model of water and solute exchanges in the rat outer medulla to incorporate the transport of nitric oxide (NO) and superoxide (O2−) and to examine the impact of NO-O2− interactions on medullary thick ascending limb (mTAL) NaCl reabsorption and oxygen (O2) consumption, under both physiological and pathological conditions. Our results suggest that NaCl transport and the concentrating capacity of the outer medulla are substantially modulated by basal levels of NO and O2−. Moreover, the effect of each solute on NaCl reabsorption cannot be considered in isolation, given the feedback loops resulting from three-way interactions between O2, NO, and O2−. Notwithstanding vasoactive effects, our model predicts that in the absence of O2−-mediated stimulation of NaCl active transport, the outer medullary concentrating capacity (evaluated as the collecting duct fluid osmolality at the outer-inner medullary junction) would be ∼40% lower. Conversely, without NO-induced inhibition of NaCl active transport, the outer medullary concentrating capacity would increase by ∼70%, but only if that anaerobic metabolism can provide up to half the maximal energy requirements of the outer medulla. The model suggests that in addition to scavenging NO, O2− modulates NO levels indirectly via its stimulation of mTAL metabolism, leading to reduction of O2 as a substrate for NO. When O2− levels are raised 10-fold, as in hypertensive animals, mTAL NaCl reabsorption is significantly enhanced, even as the inefficient use of O2 exacerbates hypoxia in the outer medulla. Conversely, an increase in tubular and vascular flows is predicted to substantially reduce mTAL NaCl reabsorption. In conclusion, our model suggests that the complex interactions between NO, O2−, and O2 significantly impact the O2 balance and NaCl reabsorption in the outer medulla.


1999 ◽  
Vol 277 (3) ◽  
pp. F447-F453 ◽  
Author(s):  
John N. Lorenz ◽  
Patrick J. Schultheis ◽  
Timothy Traynor ◽  
Gary E. Shull ◽  
Jürgen Schnermann

The Na/H exchanger isoform 3 (NHE3) is expressed in the proximal tubule and thick ascending limb and contributes to the reabsorption of fluid and electrolytes in these segments. The contribution of NHE3 to fluid reabsorption was assessed by micropuncture in homozygous ( Nhe3 −/−) and heterozygous ( Nhe3 +/−) knockout mice, and in their wild-type (WT, Nhe3 +/+) littermates. Arterial pressure was lower in the Nhe3 −/−mice (89 ± 6 mmHg) compared with Nhe3 +/+ (118 ± 4) and Nhe3 +/−(108 ± 5). Collections from proximal and distal tubules demonstrated that proximal fluid reabsorption was blunted in both Nhe3 +/− and Nhe3 −/−mice (WT, 4.2 ± 0.3; Nhe3 +/−, 3.4 ± 0.2; and Nhe3 −/−, 2.6 ± 0.3 nl/min; P < 0.05). However, distal delivery of fluid was not different among the three groups of mice (WT, 3.3 ± 0.4 nl/min; Nhe3 +/−, 3.3 ± 0.2 nl/min; and Nhe3 −/−, 3.0 ± 0.4 nl/min; P < 0.05). In Nhe3 −/−mice, this compensation was largely attributable to decreased single-nephron glomerular filtration rate (SNGFR): 10.7 ± 0.9 nl/min in the Nhe3 +/+ vs. 6.6 ± 0.8 nl/min in the Nhe3 −/−, measured distally. Proximal-distal SNGFR differences in Nhe3 −/−mice indicated that much of the decrease in SNGFR was due to activation of tubuloglomerular feedback (TGF), and measurements of stop-flow pressure confirmed that TGF is intact in Nhe3 −/−animals. In contrast to Nhe3 −/−mice, normalization of early distal flow rate in Nhe3 +/−mice was not related to decreased SNGFR (9.9 ± 0.7 nl/min), but rather, to increased fluid reabsorption in the loop segment ( Nhe3 +/+, 2.6 ± 0.2; Nhe3 +/−, 3.6 ± 0.5 nl/min). We conclude that NHE3 is a major Na/H exchanger isoform mediating Na+ and fluid reabsorption in the proximal tubule. In animals with NHE3 deficiency, normalization of fluid delivery to the distal tubule is achieved through alterations in filtration rate and/or downstream transport processes.


2009 ◽  
Vol 297 (2) ◽  
pp. F341-F349 ◽  
Author(s):  
Elvin Odgaard ◽  
Helle A. Praetorius ◽  
Jens Leipziger

Extracellular nucleotides are local, short-lived signaling molecules that inhibit renal tubular transport via both luminal and basolateral P2 receptors. Apparently, the renal epithelium itself is able to release nucleotides. The mechanism and circumstances under which nucleotide release is stimulated remain elusive. Here, we investigate the phenomenon of nucleotide secretion in intact, perfused mouse medullary thick ascending limb (mTAL) and cortical collecting duct (CCD). The nucleotide secretion was monitored by a biosensor adapted to register nucleotides in the tubular outflow. Intracellular Ca2+ concentration ([Ca2+]i) was measured simultaneously in the biosensor cells and the renal tubule with fluo 4. We were able to identify spontaneous tubular nucleotide secretion in resting perfused mTAL. In this preparation, 10 nM AVP and 1-desamino-8-d-arginine vasopressin (dDAVP) induced robust [Ca2+]i oscillations, whereas AVP in the CCD induced large, slow, and transient [Ca2+]i elevations. Importantly, we identify that AVP/dDAVP triggers tubular secretion of nucleotides in the mTAL. After addition of AVP/dDAVP, the biosensor registered bursts of nucleotides in the tubular perfusate, corresponding to a tubular nucleotide concentration of ∼0.2–0.3 μM. A very similar response was observed after AVP stimulation of CCDs. Thus AVP stimulated tubular secretion of nucleotides in a burst-like pattern with peak tubular nucleotide concentrations in the low-micromolar range. We speculate that local nucleotide signaling is an intrinsic feedback element of hormonal control of renal tubular transport.


1995 ◽  
Vol 268 (5) ◽  
pp. F960-F966 ◽  
Author(s):  
J. Schnermann

The furosemide sensitivity of the tubuloglomerular feedback (TGF) response has suggested an important role for the Na-2Cl-K cotransporter in the mechanism by which increased luminal NaCl concentration causes afferent arteriolar vasoconstriction. The present experiments in anesthetized rats were performed to evaluate the effect of K channel blockade with Ba on TGF, since Ba has been shown to inhibit NaCl transport in the thick ascending limb. The presence of either 1.5 or 2 mM BaCl2 during retrograde perfusion with a 135 mM NaCl solution reduced the decrease of early proximal flow rate (VEP) by 2.7 +/- 0.76 (P < 0.02) and 4.2 +/- 0.8 nl/min (P < 0.01) compared with perfusion without BaCl2. Retrograde perfusion with 38 mM NaCl + 5 mM KCl reduced VEP by 10.4 +/- 1.3 nl/min, whereas 40 mM NaCl + 1.5 mM BaCl2 caused a reduction by only 6.1 +/- 1.4 nl/min (P < 0.001). In contrast to the inhibition caused by retrograde perfusion with low concentrations of BaCl2, increased vasoconstriction was seen during retrograde perfusion with 5 mM BaCl2 or during orthograde perfusion with 10 mM BaCl2. The addition of 10(-4) M furosemide to a solution containing 5 mM BaCl2 largely blocked the increased vasoconstrictor response. Peritubular perfusion with a solution containing 5 mM BaCl2 caused a fall in stop-flow pressure in an adjacent nephron by 10.7 +/- 1.5 mmHg (P < 0.001). These results indicate that under our experimental conditions Ba ions exert a dual effect on vascular responses to changes in luminal NaCl concentration.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 317 (2) ◽  
pp. F444-F455 ◽  
Author(s):  
Agustin Gonzalez-Vicente ◽  
Nancy Hong ◽  
Jeffrey L. Garvin

Reactive oxygen species (ROS) play a critical role in regulating nephron transport both via transcellular and paracellular pathways under physiological and pathological circumstances. Here, we review the progress made in the past ~10 yr in understanding how ROS regulate solute and water transport in individual nephron segments. Our knowledge in this field is still rudimentary, with basic information lacking. This is most obvious when looking at the reported disparate effects of superoxide ([Formula: see text]) and H2O2 on proximal nephron transport, where there are no easy explanations as to how to reconcile the data. Similarly, we know almost nothing about the regulation of transport in thin descending and ascending limbs, information that is likely critical to understanding the urine concentrating mechanism. In the thick ascending limb, there is general agreement that ROS enhance transcellular reabsorption of NaCl, but we know very little about their effects on the paracellular pathway and therefore Ca2+ and Mg2+ transport. In the distal convoluted tubule, precious little is known. In the collecting duct, there is general agreement that ROS stimulate the epithelial Na+ channel.


2016 ◽  
Vol 311 (4) ◽  
pp. F822-F829 ◽  
Author(s):  
Shoujin Hao ◽  
AnnMarie DelliPizzi ◽  
Mariana Quiroz-Munoz ◽  
Houli Jiang ◽  
Nicholas R. Ferreri

The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 μg·kg−1·day−1) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by ∼75% in TAL tubules from rats given 1% NaCl concomitant with a ∼60% inhibition of COX-2-dependent PGE2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced ∼40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 μg·kg−1·day−1), which increased COX-2 expression and renal PGE2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE2 synthesis, thereby mitigating the inhibitory effects of PGE2 on these transporters and decreasing urine volume.


2008 ◽  
Vol 295 (3) ◽  
pp. F789-F802 ◽  
Author(s):  
Pia Welker ◽  
Alexandra Böhlick ◽  
Kerim Mutig ◽  
Michele Salanova ◽  
Thomas Kahl ◽  
...  

Apical bumetanide-sensitive Na+-K+-2Cl− cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40–70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na+-Cl− cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by 86Rb+ influx in Xenopus laevis oocytes was markedly reduced by methyl-β-cyclodextrin (MβCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MβCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.


2014 ◽  
Vol 307 (2) ◽  
pp. F137-F146 ◽  
Author(s):  
Aurélie Edwards ◽  
Hayo Castrop ◽  
Kamel Laghmani ◽  
Volker Vallon ◽  
Anita T. Layton

This study aims to understand the extent to which modulation of the Na+-K+-2Cl− cotransporter NKCC2 differential splicing affects NaCl delivery to the macula densa. NaCl absorption by the thick ascending limb and macula densa cells is mediated by apical NKCC2. A recent study has indicated that differential splicing of NKCC2 is modulated by dietary salt (Schieβl IM, Rosenauer A, Kattler V, Minuth WW, Oppermann M, Castrop H. Am J Physiol Renal Physiol 305: F1139–F1148, 2013). Given the markedly different ion affinities of its splice variants, modulation of NKCC2 differential splicing is believed to impact NaCl reabsorption. To assess the validity of that hypothesis, we have developed a mathematical model of macula densa cell transport and incorporated that cell model into a previously applied model of the thick ascending limb (Weinstein AM, Krahn TA. Am J Physiol Renal Physiol 298: F525–F542, 2010). The macula densa model predicts a 27.4- and 13.1-mV depolarization of the basolateral membrane [as a surrogate for activation of tubuloglomerular feedback (TGF)] when luminal NaCl concentration is increased from 25 to 145 mM or luminal K+ concentration is increased from 1.5 to 3.5 mM, respectively, consistent with experimental measurements. Simulations indicate that with luminal solute concentrations consistent with in vivo conditions near the macula densa, NKCC2 operates near its equilibrium state. Results also suggest that modulation of NKCC2 differential splicing by low salt, which induces a shift from NKCC2-A to NKCC2-B primarily in the cortical thick ascending limb and macula densa cells, significantly enhances salt reabsorption in the thick limb and reduces Na+ and Cl− delivery to the macula densa by 3.7 and 12.5%, respectively. Simulation results also predict that the NKCC2 isoform shift hyperpolarizes the macula densa basolateral cell membrane, which, taken in isolation, may inhibit the release of the TGF signal. However, excessive early distal salt delivery and renal salt loss during a low-salt diet may be prevented by an asymmetric TGF response, which may be more sensitive to flow increases.


Sign in / Sign up

Export Citation Format

Share Document