Actions of diazoxide on CA1 neurons in hippoeampal slices from rats

1995 ◽  
Vol 73 (5) ◽  
pp. 608-618 ◽  
Author(s):  
G. Erdemli ◽  
K. Krnjević

Membrane effects of diazoxide (DZX) were examined in CA1 pyramidal neurons, mainly by whole-cell recording in slices kept at 33 °C (from Sprague–Dawley rats). Bath applications of DZX (0.65 mM) did not significantly change the resting input conductance; but instantaneous inward rectification was reduced by 47 ± 14% (near –110 mV). There was a similar depression of a large, sustained voltage-dependent outward current (by 44 ± 11% near 0 mV). A nearly identical reduction of the outward current recorded in a Ca current suppressing medium (but not in 30 mM tetraethylammonium) indicated that the DZX-sensitive current includes the delayed rectifier. In Mn, low-Ca medium containing tetraethylammonium and carbachol, DZX potentiated (by 43 ± 12%) the D-type slowly decaying outward current seen after hyperpolarizing pulses at a holding potential of ≈ −50 mV. DZX abolished or depressed slow inward currents, such as the tetrodotoxin-sensitive persistent Na current, high voltage activated Ca currents (IC50 = 0.47 mM), and the Q current. In 6 of 13 cells recorded with electrodes containing either guanosine or adenosine diphosphate, DZX potentiated the voitage-dependent outward current, but input conductances were reduced. In conclusion, although there was little indication that it activates classical KATP channels in CA1 neurons, DZX strongly depresses several voltage-dependent, slowly inactivating outward and inward currents, which are important modulators of cell excitability.Key words: KATP channels, persistent Na current, high voltage activated Ca currents, delayed rectifier, D current, sulphonylureas, nucleotide diphosphates.

1982 ◽  
Vol 79 (2) ◽  
pp. 187-209 ◽  
Author(s):  
J E Lisman ◽  
G L Fain ◽  
P M O'Day

The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.


1989 ◽  
Vol 62 (1) ◽  
pp. 15-30 ◽  
Author(s):  
K. Krnjevic ◽  
J. Leblond

1. Effects of anoxia (2-4 min of 95% N2-5% CO2) on membrane currents of CA1 neurons were studied by single-electrode voltage clamp in hippocampal slices (from Sprague-Dawley rats) kept in an interface-type chamber at 33.5 degree. 2. When recording with KCl electrodes at a holding potential (VH) near-70 mV, anoxia evoked a slow outward current [0.18 +/- 0.06 (SE) nA], accompanied by a conductance increase ( + 46 +/- 20%, mean +/- SE). The difference current evoked by N2 had a reversal potential near-100 mV. It was much smaller in presence of 2-4 mM extracellular Cs, and any remaining outward current was abolished by 10 mM tetraethylammonium (TEA). Only inward currents were observed when recording with CsCl electrodes. 3. Inward relaxations evoked by large hyperpolarizing pulses from VH less than or equal to - 70 mV (Q-type) were not significantly depressed by anoxia (-1.5 +/- 6.0%). 4. Some voltage-dependent outward currents (evoked by 200-ms depolarizing pulses) were depressed during anoxia: 1) a fast-inactivating (A-like) current, obtained at VH less than or equal to -70 mV and suppressed by 200 microM 4-AP, was reduced by 25.6 +/- 7.3% (n = 5); 2) a slower, noninactivating (C-like) current, suppressed by TEA, was reduced by 52 +/- 7.2% (n = 16). Neither of these currents (1 or 2) was observed when recording with 2- to 3-M CsCl electrodes; and 3) small (M-like) inward relaxations, observed at VH approximately -40 mV 5. Net inward currents could be evoked after blockage of GK with 10 mM TEA when recording with KCl electrodes or by recording with CsCl electrodes. At VH less than or equal to -70 mV, large, transient, and incompletely controlled currents were evoked by depolarizing pulses; at VH less than or equal to -50 mV, smaller and more persistent currents were evoked by depolarizing pulses (L-like), and transient currents (T-like?) were seen immediately after hyperpolarizing pulses. 6.L-type currents (at VH less than or equal to -50 mV) were nearly abolished after 1-2 min anoxia (by approximately 90%). This was equally true of the currents evoked by constant pulses or peak currents in I-V plots. After reoxygenation, recovery was biphasic, with a quick early phase (to 50-80% in 2 min) and then a much slower one (to 60-90% by 10-15 min).(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Author(s):  
Abdesslam Chrachri

AbstractWhole-cell patch-clamp recordings from identified centrifugal neurons of the optic lobe in a slice preparation allowed the characterization of five voltage-dependent currents; two outward and three inward currents. The outward currents were; the 4-aminopyridine-sensitive transient potassium or A-current (IA), the TEA-sensitive sustained current or delayed rectifier (IK). The inward currents were; the tetrodotoxin-sensitive transient current or sodium current (INa). The second is the cobalt- and cadmium-sensitive sustained current which is enhanced by barium and blocked by the dihydropyridine antagonist, nifedipine suggesting that it could be the L-type calcium current (ICaL). Finally, another transient inward current, also carried by calcium, but unlike the L-type, this current is activated at more negative potentials and resembles the low-voltage-activated or T-type calcium current (ICaT) of other preparations.Application of the neuropeptide FMRFamide caused a significant attenuation to the peak amplitude of both sodium and sustained calcium currents without any apparent effect on the transient calcium current. Furthermore, FMRFamide also caused a reduction of both outward currents in these centrifugal neurons. The fact that FMRFamide reduced the magnitude of four of five characterized currents could suggest that this neuropeptide may act as a strong inhibitory agent on these neurons.SummaryFMRFamide modulate the ionic currents in identified centrifugal neurons in the optic lobe of cuttlefish: thus, FMRFamide could play a key role in visual processing of these animals.


2000 ◽  
Vol 278 (3) ◽  
pp. H806-H817 ◽  
Author(s):  
Gary A. Gintant

Although inactivation of the rapidly activating delayed rectifier current ( I Kr) limits outward current on depolarization, the role of I Kr (and recovery from inactivation) during repolarization is uncertain. To characterize I Krduring ventricular repolarization (and compare with the inward rectifier current, I K1), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I Kr was minimal at plateau potentials but transiently increased during repolarizing ramps. The I Kr transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I Kr transient terminating the plateau. Although peak I Kr transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current ( I K1) density during repolarization was dispersed, whereas potentials characterizing I K1 defined a narrower (more negative) voltage range. In summary, rapidly activating I Kr provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I Kr provides a novel means for modulating the contribution of this current during repolarization.


1987 ◽  
Vol 58 (6) ◽  
pp. 1468-1484 ◽  
Author(s):  
J. Johansen ◽  
J. Yang ◽  
A. L. Kleinhaus

1. The purely calcium-dependent action potential of the anterior lateral giant (ALG) cell in the leech Haementeria was examined under voltage clamp. 2. Analysis with ion substitutions showed that the ALG cell action potential is generated by only two time- and voltage-dependent conductance systems, an inward Ca-dependent current (ICa) and an outward Ca-dependent K current IK(Ca). 3. The kinetic properties of the inward current were examined both in Cs-loaded neurons with Ca as the current carrier as well as in Ba-containing Ringer solutions with Ba as the current carrier, since Ba effectively blocked all time- and voltage-dependent outward current. 4. During a maintained depolarization, Ba and Ca currents activated with a time constant tau m, they then inactivated with the decay following a single exponential time course with a time constant tau h. The time constants for decay of both Ba and Ca currents were comparable, suggesting that the mechanism of inactivation of ICa in the ALG cell is largely voltage dependent. In the range of potentials from 5 to 45 mV, tau m varied from 8 to 2 ms and tau h varied from 250 to 125 ms. 5. The activation of currents carried by Ba, after correction for inactivation, could be described reasonably well by the expression I'Ba = I'Ba(infinity) [1--exp(-t/tau m)]. 6. The steady-state activation of the Ba-conductance mBa(infinity) increased sigmoidally with voltage and was approximated by the equation mBa(infinity) = (1 + exp[(Vh-6)/3])-1. The steady-state inactivation hBa(infinity) varied with holding potential and could be described by the equation hBa(infinity) = [1 + exp(Vh + 10/7)]-1. Recovery from inactivation of IBa was best described by the sum of two exponential time courses with time constants of 300 ms and 1.75 s, respectively. 7. The outward current IK(Ca) developed very slowly (0.5–1 s to half-maximal amplitude) and did not inactivate during a 20-s depolarizing command pulse. Tail current decay of IK(Ca) followed a single exponential time course with voltage-dependent time constants of between 360 and 960 ms. The steady-state activation n infinity of IK(Ca) increased sigmoidally with depolarization as described by the equation n infinity = [1 + exp(Vh-13.5)/-8)]-1. 8. The reversal potentials of IK(Ca) tail currents were close to the expected equilibrium potential for potassium and they varied linearly with log [K]o with a slope of 51 mV. These results suggest a high selectivity of the conductance for K ions.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 262 (1) ◽  
pp. C75-C83 ◽  
Author(s):  
C. H. Follmer ◽  
N. J. Lodge ◽  
C. A. Cullinan ◽  
T. J. Colatsky

The effects of cadmium on the delayed outward potassium current (IK) were investigated in isolated cat ventricular myocytes using the single suction pipette voltage-clamp technique. IK activation was examined using peak tail currents elicited after 750-ms voltage-clamp steps to selected membrane potentials from a holding potential of -40 mV. In the presence of Cd2+ (0.2 mM), peak tail currents increased from a control value of 85 +/- 12 to 125 +/- 18 pA (n = 4). Activation curves constructed from the average peak tail-current measurements in all experiments showed that Cd2+ shifted the voltage dependence of activation to more positive potentials by 16.4 +/- 2.0 mV and increased the slope factor of the activation curve from 6.1 +/- 0.2 to 6.9 +/- 0.2 mV. In the absence of Cd2+, increases in holding potential from -30 to -70 mV had no effect on the magnitude of the peak tail currents, suggesting that the Cd(2+)-induced increase was not the result of a voltage-dependent increase in the number of available K+ channels at the holding potential. Slow voltage ramps from -70 to +70 mV revealed that Cd2+ increased the outward current at membrane potentials positive to +20 mV and shifted the voltage range in which IK inwardly rectified to more positive potentials. The fully activated current-voltage relationship was also shifted to more positive potentials by Cd2+. Cd2+ did not alter channel selectivity for K+.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 128 (2) ◽  
pp. 185-202 ◽  
Author(s):  
Yaxia Zhang ◽  
Xiaowei Niu ◽  
Tinatin I. Brelidze ◽  
Karl L. Magleby

Intracellular Mg2+ and natural polyamines block outward currents in BK channels in a highly voltage-dependent manner. Here we investigate the contribution of the ring of eight negatively charged residues (4 x E321/E324) at the entrance to the inner vestibule of BK channels to this block. Channels with or without (E321N/E324N) the ring of negative charge were expressed in oocytes and unitary currents were recorded from inside-out patches over a range of intracellular Mg2+ and polyamine concentrations. Removing the ring of charge greatly decreased the block, increasing KBap (0 mV) for Mg2+ block from 48.3 ± 3.0 to 143 ± 8 mM, and for spermine block from 8.0 ± 1.0 to 721 ± 9 mM (150 mM symmetrical KCl). Polyamines with fewer amine groups blocked less: putrescine < spermidine < spermine. An equation that combined an empirical Hill function for block together with a Boltzmann function for the voltage dependence of KBap described the voltage and concentration dependence of the block for channels with and without the ring of charge. The Hill coefficients for these descriptions were <1 for both Mg2+ and spermine block, and were unchanged by removing the ring of charge. When KCli was increased from 150 mM to 3 M, the ring of charge no longer facilitated block, Mg2+ block was reduced, spermine block became negligible, and the Hill coefficients became ∼1.0. BK channels in cell-attached oocyte patches displayed inward rectification, which was reduced for channels without the ring of charge. Taken together, these observations suggest that the ring of negative charge facilitates block through a preferential electrostatic attraction of Mg2+ and polyamine over K+. This preferential attraction of multivalent blockers over monovalent K+ would decrease the K+ available at the inner vestibule to carry outward current in the presence of Mg2+ or polyamines, while increasing the concentration of blocker available to enter and block the conduction pathway.


2001 ◽  
Vol 91 (6) ◽  
pp. 2742-2750 ◽  
Author(s):  
Andrew Q. Ding ◽  
John N. Stallone

Recent studies have established that testosterone (Tes) produces acute (nongenomic) vasorelaxation. This study examined the structural specificity of Tes-induced vasorelaxation and the role of vascular smooth muscle (VSM) K+ channels in rat thoracic aorta. Aortic rings from male Sprague-Dawley rats with (Endo+) and without endothelium (Endo−) were prepared for isometric tension recording. In Endo− aortas precontracted with phenylephrine, 5–300 μM Tes produced dose-dependent relaxation from 10 μM (4 ± 1%) to 300 μM (100 ± 1%). In paired Endo+ and Endo− aortas, Tes-induced vasorelaxation was slightly but significantly greater in Endo+ aortas (at 5–150 μM Tes); sensitivity (EC50) of the aorta to Tes was reduced by nearly one-half in Endo− vessels. Based on the sensitivity (EC50) of Endo− aortas, Tes, the active metabolite 5α-dihydrotestosterone, the major excretory metabolites androsterone and etiocholanolone, the nonpolar esters Tes-enanthate and Tes-hemisuccinate (THS), and THS conjugates to BSA (THS-BSA) exhibited relative potencies for vasorelaxation dramatically different from androgen receptor-mediated effects observed in reproductive tissues, with a rank order of THS-BSA > Tes > androsterone = THS = etiocholanolone > dihydrotestosterone ≫ Tes-enanthate. Pretreatment of aortas with 5 mM 4-aminopyridine attenuated Tes-induced vasorelaxation by an average of 44 ± 2% (25–300 μM Tes). In contrast, pretreatment of aortas with other K+ channel inhibitors had no effect. These data reveal that Tes-induced vasorelaxation is a structurally specific effect of the androgen molecule, which is enhanced in more polar analogs that have a lower permeability to the VSM cell membrane, and that the effect of Tes involves activation of K+ efflux through K+channels in VSM, perhaps via the voltage-dependent (delayed-rectifier) K+ channel.


1995 ◽  
Vol 269 (2) ◽  
pp. H524-H532 ◽  
Author(s):  
K. Muraki ◽  
Y. Imaizumi ◽  
M. Watanabe ◽  
Y. Habuchi ◽  
W. R. Giles

The role of delayed rectifier K+ current(s) (IK) in rabbit left atrium was examined by applying the whole cell voltage-clamp technique to isolated single myocytes. Right-triangular waveforms, which mimic the shape of atrial action potentials (APs), and selective blockers were used to compare the contribution of IK with other K+ currents to repolarization of the APs. IK measured at 34 degrees C in atrial myocytes was very small; the maximum peak amplitude of the tail current (IK,tail) at -40 mV was approximately 50 pA. The IK,tail was almost abolished in most cells (approximately 80%) by the application of 1 microM E-4031, a class III antiarrhythmic drug. The E-4031-sensitive current recorded with the triangular command wave-form showed strong inward rectification and had a maximum amplitude of approximately 30 pA at -40 mV. Total outward current elicited by triangular command pulses depended strongly on stimulation frequency. The main frequency-dependent component was a Ca(2+)-independent transient K+ current (I(t)). I(t) elicited by triangular pulses at 1 Hz was substantially reduced by 4-aminopyridine (4-AP) at potentials positive to 0 mV but was not changed significantly by 1 microM E-4031; 100 microM E-4031 reduced I(t) by approximately 30%. The shape of the APs which were recorded from a single rabbit atrial cell strongly depended on the pulse frequency. Application of 1 microM E-4031 increased action potential duration (APD) in > 50% of cells examined but had little effect on the resting membrane potential (RMP). Application of 0.1 mM BaCl2 also lengthened APD and reduced RMP by approximately 20 mV.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 74 (4) ◽  
pp. 1485-1497 ◽  
Author(s):  
J. Schmidt ◽  
S. Gramoll ◽  
R. L. Calabrese

1. The effects of Phe-Met-Arg-Phe (FMRF)amide (10(-6) M) on membrane properties of heart interneurons in the third, fourth, and fifth segmental ganglia [HN(3), HN(4), and HN(5) cells, respectively] of the leech were studied using discontinuous current-clamp and single-electrode voltage-clamp techniques. FMRFamide was focally applied onto the soma of the cell under investigation. 2. Application of FMRFamide depolarized HN(3) and HN(4) cells by evoking an inward current. These responses were subject to pronounced desensitization. The inward currents evoked by application of FMRFamide were associated with an increase in membrane conductance and appeared to be voltage dependent. Currents were enhanced at more depolarized potentials. 3. The responsiveness of the HN(3) and HN(4) cells was not affected when the Ca2+ concentration in the bath saline was reduced from normal (1.8 mM) to 0.1 mM. The depolarizing response on application of FMRFamide was blocked when Co2+ was substituted for Ca2+. 4. HN(3) and HN(4) cells did not respond to FMRFamide application in Na(+)-free solution. Inward currents were largely reduced when bath saline with 30% of the normal Na+ concentration was used. When Li+ was substituted for Na+ in the saline, application of FMRFamide still evoked depolarizing responses in HN(3) and HN(4) cells. 5. We conclude that focal application of FMRFamide onto the somata of HN(3) and HN(4) cells evokes a voltage-dependent inward current, carried largely by Na+. 6. Focal application of FMRFamide onto somata of HN(5) cells hyperpolarized these cells by activating a voltage-dependent outward current. 7. HN(5) cells were loaded with Cl- until inhibitory postsynaptic potentials carried by Cl- reversed. Cl(-)-loaded cells still responded with a hyperpolarization when FMRFamide was applied onto their somata. Therefore the outward current evoked by FMRFamide appears to be mediated by a K+ conductance increase. 8. Application of FMRFamide onto the somata of HN(5) cells enhanced outward currents that were evoked by depolarizing voltage steps from a holding potential of -45 mV. 9. We conclude that the hyperpolarizing response of HN(5) cells to focal application of FMRFamide onto their somata is the result of an up-regulation of a voltage-dependent K+ current.


Sign in / Sign up

Export Citation Format

Share Document