scholarly journals Habitat associations of American badgers in southeastern British Columbia

2002 ◽  
Vol 80 (7) ◽  
pp. 1228-1239 ◽  
Author(s):  
Clayton D Apps ◽  
Nancy J Newhouse ◽  
Trevor A Kinley

American badgers (Taxidea taxus) are endangered in British Columbia due to habitat loss and human-caused mortality. To better understand human impacts and to promote conservation planning, we described badger habitat relationships. At two spatial scales, we analyzed selection by 12 radio-implanted resident badgers for soil composition, forest overstory, land cover, vegetation productivity, terrain, and human influence. At a broad (23.8 km2) landscape scale, soil parent-material associations were positive with glaciolacustrine and glaciofluvial and negative with colluvial. Soil-order associations were positive with brunisols and regosols and negative with podzols and luvisols. Association with fine sandy-loam texture was positive. Associations were negative with forested habitats and positive with open range, agricultural habitats, and linear disturbances. Associations were negative with elevation, slope, terrain ruggedness, and both vegetation productivity and moisture. At a fine (14.5 ha) scale, associations were positive with glaciofluvial, fine sandy-loam textured, and well-drained soils. Associations were negative with colluvial soils, forest cover, vegetation moisture, elevation, and ruggedness. Associations with open range and southern aspects were positive. The linear combination of a subset of variables could explain and predict habitat selection. At this range extent, natural conditions may restrict badger occurrence, increasing badger sensitivity to human factors that influence habitat quality and mortality.

2009 ◽  
Vol 26 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Jesse R. Lasky ◽  
Timothy H. Keitt

Abstract:Community structure and species’ abundances may be strongly correlated to patterns of forest cover, although such patterns are poorly known for tropical dry-forest birds, especially for those in Panamanian dry forests. Birds were distance-sampled during point counts in five dry-forest fragments in Panama. Distance from point count to forest edge and forest coverage at three spatial scales (500, 1000 and 2000-m radius) were compared as covariate predictors of the abundance of avian species and guilds. Each covariate was selected in at least two models of species or guild abundance. Abundance patterns were consistent with previously reported habitat associations for only two of seven open-habitat or forest-preferring species that showed forest cover-abundance relationships. Null models best described the abundance of all forest species and the subset of uncommon forest species. Thus many of these species appear insensitive to the forest-cover gradients studied. Total abundance of open-habitat-preferring species increased in dry forests with increasing forest coverage within 500 m, suggesting that the relationship between their abundance and vegetation structure are spatial-scale and habitat dependent. Nectarivores had lower abundance as forest cover within 1000 m increased, supporting previous claims that this group is tolerant of forest edges.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Oscar V. Bautista-Cespedes ◽  
Louise Willemen ◽  
Augusto Castro-Nunez ◽  
Thomas A. Groen

AbstractThe Amazon rainforest covers roughly 40% of Colombia’s territory and has important global ecological functions. For more than 50 years, an internal war in the country has shaped this region. Peace negotiations between the government and the Revolutionary Armed Forces of Colombia (FARC) initiated in 2012 resulted in a progressive de-escalation of violence and a complete ceasefire in 2016. This study explores the role of different deforestation drivers including armed conflict variables, in explaining deforestation for three periods between 2001 and 2015. Iterative regression analyses were carried out for two spatial extents: the entire Colombian Amazon and a subset area which was most affected by deforestation. The results show that conflict variables have positive relationships with deforestation; yet, they are not among the main variables explaining deforestation. Accessibility and biophysical variables explain more variation. Nevertheless, conflict variables show divergent influence on deforestation depending on the period and scale of analysis. Based on these results, we develop deforestation risk maps to inform the design of forest conservation efforts in the post-conflict period.


1989 ◽  
Vol 69 (4) ◽  
pp. 799-811 ◽  
Author(s):  
LINNELL M. EDWARDS ◽  
J. R. BURNEY

Three soils from Prince Edward Island (a loam, a fine sandy loam, and a sandy loam) were tested under a laboratory rainfall simulator to examine the effects of frequency of freezing and thawing, winter rye cover, incorporated cereal residue, and subsoil compaction on runoff volume and sediment loss. Wooden soil boxes were subjected to simulated rain (i) at the end of a 10-d freezing period, and (ii) at the end of the 5th 24-h freezing period of a 10-d alternating freeze-thaw cycle (freeze/thaw). Where the soil was continuously frozen for 10 d, there was 178% greater sediment loss and 160% greater runoff than with daily freeze/thaw over the same period, but there was no difference in sediment concentration. Incorporated cereal residue decreased sediment loss to 50% and runoff to 77% of that from bare soil. Winter rye cover decreased sediment loss to 73% of that from bare soil. Simulated soil compaction caused a 45% increase in sediment loss. The loam soil showed 16.5% greater loss of fine sediment fractions <0.075 mm than the fine sandy loam which showed 23.4% greater loss than the sandy loam. Key words: Freeze-thaw, erosion, compaction, winter rye, cereal residue, rainfall simulator, Prince Edward Island soils


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaëtane Le Provost ◽  
Jan Thiele ◽  
Catrin Westphal ◽  
Caterina Penone ◽  
Eric Allan ◽  
...  

AbstractLand-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


2011 ◽  
Vol 87 (05) ◽  
pp. 612-624 ◽  
Author(s):  
Eric Alvarez ◽  
Louis Bélanger ◽  
Louis Archambault ◽  
Frédéric Raulier

Pre-industrial forest cover portrait is a recognized method for establishing the bases of sustainable forest management. However, it is a spatially and temporally dependant concept that should be used with caution in presence of big fires. The objective of the study was to portray the pre-industrial landscape in a mixedwood temperate forest in central Quebec at different spatial scales. The study was based on archival records from a forest company. The pre-industrial forest cover landscape of our study area was mainly composed of mature or old-growth (>100 years) stands and dominated by mixedwood forest stands with intolerant hardwoods. The main tree species were white birch, black spruce and jack pine, three species associated to forest succession after fire in the boreal forest. Considering the great variability caused by the fires and partial knowledge of this variability, for each spatial scale considered, we propose some management targets based on the main pre-industrial characteristics of this forest. To respect the pre-industrial variability, our study suggested that silviculture should be adapted at different landscape scales. Cover types and age class targets should be based on main preindustrial characteristics at each landscape scale analyzed.


2008 ◽  
Vol 84 (4) ◽  
pp. 548-552 ◽  
Author(s):  
Antony W Diamond

Research on forest bird ecology in the ACWERN (Atlantic Cooperative Wildlife Ecology Research Network) lab at the University of New Brunswick, Fredericton, since 1995 has focused on assessing the relative contributions of habitat quality at large (“landscape”) and small (“local” or “stand”) spatial scales. To do so we had to develop methods for assessing key demographic components of fitness (productivity and survival) at large spatial scales. The large extent of forest cover in the Maritimes contrasts with regions where such work has traditionally been carried out, in which forest is clearly fragmented by agriculture or residential development. Our main findings are that spatial effects in highly forested landscapes can often be detected only by using species-specific habitat models, rather than broader categories such as “mature” or “softwood”, that Blackburnian Warblers (Dendroica fusca) are effective indicators of mixedwood forest but define it differently than forest managers do, and that cavity nesters (e.g., woodpeckers) may require different habitat components for nesting and feeding and so cannot be managed for solely on the basis of providing snags for nesting. Our focus has shifted recently to intensive studies on a species at risk, Bicknell's Thrush (Catharus bicknelli), which in New Brunswick breeds in man-made regenerating softwood forest stands, and assessing its response both to precommercial thinning of the breeding habitat and to effects carrying over from the winter habitat in the Caribbean. Key words: landscape effects, thresholds, survival, productivity, fitness, carry-over, habitat, fragmentation


Soil Science ◽  
1946 ◽  
Vol 62 (6) ◽  
pp. 457-468
Author(s):  
F. L. WYND ◽  
G. R. NOGGLE

Rangifer ◽  
2008 ◽  
Vol 28 (1) ◽  
pp. 33
Author(s):  
Robert Serrouya ◽  
Bruce N. McLellan ◽  
Clayton D. Apps ◽  
Heiko U. Wittmer

Mountain caribou are an endangered ecotype of woodland caribou (Rangifer tarandus caribou) that live in highprecipitation, mountainous ecosystems of southeastern British Columbia and northern Idaho. The distribution and abundance of these caribou have declined dramatically from historical figures. Results from many studies have indicated that mountain caribou rely on old conifer forests for several life-history requirements including an abundance of their primary winter food, arboreal lichen, and a scarcity of other ungulates and their predators. These old forests often have high timber value, and understanding mountain caribou ecology at a variety of spatial scales is thus required to develop effective conservation strategies. Here we summarize results of studies conducted at three different spatial scales ranging from broad limiting factors at the population level to studies describing the selection of feeding sites within seasonal home ranges of individuals. The goal of this multi-scale review is to provide a more complete picture of caribou ecology and to determine possible shifts in limiting factors across scales. Our review produced two important results. First, mountain caribou select old forests and old trees at all spatial scales, signifying their importance for foraging opportunities as well as conditions required to avoid alternate ungulates and their predators. Second, relationships differ across scales. For example, landscapes dominated by roads and edges negatively affect caribou survival, but appear to attract caribou during certain times of the year. This juxtaposition of fine-scale behaviour with broad-scale vulnerability to predation could only be identified through integrated multi-scale analyses of resource selection. Consequently we suggest that effective management strategies for endangered species require an integrative approach across multiple spatial scales to avoid a focus that may be too narrow to maintain viable populations. Abstract in Norwegian / Sammendrag:Skala-avhengig økologi og truet fjellvillrein i Britisk ColumbiaFjellvillreinen i de nedbørsrike fjellområdene i sørøstre Britisk Columbia og nordlige Idaho som er en truet økotype av skogsreinen (Rangifer tarandus caribou), har blitt kraftig redusert både i utbredelse og antall. Mange studier har vist at denne økotypen er avhengig av vinterføden hengelav i gammel barskog hvor det også er få andre klovdyr og dermed få predatorer. Slik skog er også viktige hogstområder, og å forstå økologien til fjellvillreinen i forskjellige skaleringer er derfor nødvendig for å utvikle forvaltningsstrategier som kan berge og ta vare på denne reinen. Artikkelen gir en oversikt over slike arbeider: fra studier av begrensende faktorer på populasjonsnivå til studier av sesongmessige beiteplasser på individnivå. Hensikten er å få frem et mer helhetlig perspektiv på fjellvillreinen og finne hvordan de begrensende faktorene varierer etter skaleringen som er benyttet i studiet. Oversikten vår frembragte to viktige resultater; 1) Uansett skalering så velger dyrene gammel skog og gamle trær. 2) Dyrenes bruk av et område kan variere med benyttet skalering, for eksempel vil landskap utbygd med veier og hogstflater være ufordelaktig for overlevelsen, men synes likevel å kunne tiltrekke fjellvillreinen til visse tider av året. Forholdet mellom atferd ut fra fin-skalering og stor-skalering sårbarhet hva gjelder predasjon, ville kun blitt avdekket ved flere-skaleringsanalyse av hvordan ressursene benyttes. Ut fra dette foreslår vi at forvaltningsstrategier for truete bestander som eksempelvis fjellvillreinen, må baseres på tilnærminger ut fra ulike skaleringer for å hindre at et for snevert perspektiv kan begrense muligheten for vedvarende levedyktighet.


2021 ◽  
Vol 13 (13) ◽  
pp. 20033-20055
Author(s):  
Naveen Babu Kanda ◽  
Kurian Ayushi ◽  
Vincy K. Wilson ◽  
Narayanan Ayyappan ◽  
Narayanaswamy Parthasarathy

Documenting the biodiversity of protected areas and reserve forests is important to researchers, academicians and forest departments in their efforts to establish policies to protect regional biodiversity. Shettihalli Wildlife Sanctuary (SWS) is an important protected area located in the central Western Ghats of Karnataka state known for its diverse flora and fauna with distinct ecological features. For the last four decades the sanctuary has witnessed the loss of forest cover, yet the vegetation in few locations is relatively undisturbed. The current inventory was undertaken during 2019–2020 to provide a checklist of woody species from SWS under-researched earlier. The list comprises 269 species of trees, lianas and shrubs distributed in 207 genera and 68 families. The most diverse families are Fabaceae, Moraceae, Rubiaceae, Rutaceae, Lauraceae, Apocynaceae, Meliaceae, Malvaceae, Phyllanthaceae, and Anacardiaceae, representing 48% of total woody flora. The sanctuary shelters 263 native and six exotic plant species. Thirty-nine species were endemic to the Western Ghats, five species to peninsular India and one species to the Western Ghats and Andaman & Nicobar Islands. Four forest types, i.e., dry deciduous, moist deciduous, semi-evergreen, and evergreen forests, are represented in the sanctuary. Of the total species, only seven occurred in all forest types, while 111 species are exclusive to a single forest type. One-hundred-and-four taxa were assessed for the International Union for Conservation of Nature & Natural Resources (IUCN) Red List. Ten species that fall under Near Threatened, Vulnerable, and Endangered categories were encountered occasionally. The baseline data generated on plant diversity will be useful in highlighting the importance of these forests for species conservation and forest management. Such data form a cornerstone for further research. For instance, to understand the effect of invasive species and human impacts on the diversity of the region. 


Rangifer ◽  
1996 ◽  
Vol 16 (4) ◽  
pp. 119 ◽  
Author(s):  
Deborah B. Cichowski

Initial long term planning for logging on the Tweedsmuir-Entiako caribou winter range began in the early 1980s. Because little information was available on which to base winter range management, the British Columbia Fish and Wildlife Branch began studies on radio-collared caribou in 1983, and an intensive study on caribou winter habitat requirements was conducted from 1985 to 1988. Terrestrial lichens were identified as the primary winter food source for the caribou, and in 1987, caribou winter range ecosystem maps, which emphasized abundance of terrestrial lichens, were produced. The ecosystem maps and information from the caribou study, including potential direct and indirect effects of timber harvesting on the caribou population, were used to develop a management strategy for the winter range. The management strategy comprised two levels of management: a landscape level (Caribou Management Zones); and a site-specific level (caribou habitat/timber values). Timber information associated with BC Ministry of Forests forest cover maps was integrated using a Geographic Information System. Six winter range management options were proposed ranging from harvesting low value caribou habitats only throughout the winter range to total protection of the entire winter range. Impacts of those options on both the caribou population and on the timber supply were evaluated. The options were reviewed through a public planning process, the Entiako Local Resource Use Plan, and recommendations from that process were forwarded to the British Columbia Protected Areas Strategy.


Sign in / Sign up

Export Citation Format

Share Document