Relationships between food, phylogeny, and cellulose digestion in the Bivalvia

1971 ◽  
Vol 49 (5) ◽  
pp. 617-622 ◽  
Author(s):  
Neil D. Crosby ◽  
Robert G. B. Reid

The distribution of cellulase in the class Bivalvia is studied with respect to phylogenetic position, feeding category, and food. Cellulase activity in nine species is measured turbidimetrically using reprecipitated cellulase substrate, colorimetrically using methyl cellulose substrate, and histochemically with methyl cellulose film. Cellulolytic activity in these animals generally corresponds to the level of cellulose in the food. Those animals feeding on particles with a high cellulose content have high cellulase levels, while those organisms feeding on epiorganisms, diatoms, or phytoplankton with low cellulose content have low cellulase levels. The Gastrotriteia may have characteristically higher endogenous cellulase levels than the other major groups and certain genera may have characteristically low cellulase activity.

2009 ◽  
Vol 66 (3) ◽  
pp. 304-308 ◽  
Author(s):  
Chen-Chin Chang ◽  
Chang-Chai Ng ◽  
Chung-Yi Wang ◽  
Yuan-Tay Shyu

Plant wastes present a high cellulose content, which is an ideal organic material for composting. Five strains of thermophiles from processed Brassica waste were isolated, and the hydrolytic activity on various cellulosic biomass substrata and their temperature profiles were determined. 16S rRNA sequencing identified these strains as Thermoactinomyces and Bacillus spp. Maximal cellulase activity corresponded to 2.3 U mL-1 of enzyme. The application of these strains on Brassica rapa residues demonstrates increased total nitrogen content). TA-3, a Thermoactinomycetes sp. strain, performs best among all inoculants, increasing the nitrogen content from 0.74 to 0.91%, and decreasing the carbon content from 15.4 to 12.2%, showing its high efficiency and bioactivity during compositing.


1970 ◽  
Vol 16 (7) ◽  
pp. 553-560 ◽  
Author(s):  
F. J. Stutzenberger ◽  
A. J. Kaufman ◽  
R. D. Lossin

A study was made of the open windrow method of municipal solid waste composting as related to those factors that might influence cellulose decomposition. Composting temperatures reached a maximum (55–65 °C) at 3 weeks and then gradually decreased during the rest of the 49-day process. The pH values of compost samples homogenized in distilled water decreased slightly during the initial stages of the process and then increased gradually to final values of 7.0–8.5. Clarified compost extracts were assayed for cellulase activity by measuring the hydrolysis rate of carboxymethylcellulose (CMC). Maximal cellulase activity occurred at 65 °C, pH 6.0, with a CMC concentration of 2.5%. The cellulase activity of compost increased 10-fold at a logarithmic rate while the cellulose content decreased 50%. In a preliminary search for microorganisms active in cellulose degradation during the composting process, three cellulolytic species were isolated; these were identified as Aspergillus fumigatus, a Bacillus species, and a Thermoactinomyces species of the Actinobifida group.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-10
Author(s):  
MR Adedayo ◽  
OV Ayilara

The rise in world industrialization and the cost of importing enzyme by local industries have led to arise in the search for novel and native enzyme producing microorganisms. Cellulase is an enzyme that catalyzes the breaking down of carbon chains in cellulose and hemicellulose, this research therefore aimed at studying fungal cellulase produced by Penicillium expansum grown on malus domestica (apple fruits). Fresh apple fruit was allowed to deteriorate under laboratory condition until there was visible mould growth. The mould with desired features of the organism of interest was subcultured by direct plating on PDA plates to which 10 % streptomycin has been added to prevent bacterial contaminants. The plates were incubated at 28±2 0C for 7 days until a visible mass of blue mycelia appear. The isolate was further subcultured onto freshly prepared media until pure culture was obtained. Characterization and identification of isolate were done using macroscopy and microscopy techniques. The isolate was re-inoculated into healthy apple fruits and the fruits were incubated at temperature of 28±2 oC for 8 days. Cellulolytic activity was examined every day throughout the incubation period. Crude enzyme was extracted each day using standard methods. Carboxyl methyl cellulose was used as standard for the crude cellulase activity assay after extraction from the infected apple fruits using Dinitrosalicylic acid (DNSA). Culture parameters like pH and temperature were also optimized to determine their effect on cellulolytic activity of the fungus. Cellulase activity was defined as the amount of glucose produced in μmol/mg/min under the assay condition. The highest cellulase activity of 86.84±0.52 μmol/mg/min was observed on day 6 of incubation at 28±2 oC and at pH 7. In conclusion, it is evident from this research that P. expansum isolated could be used as potential novel organism for industrial production of cellulase under optimized fermentation conditions.


2021 ◽  
Vol 8 (3) ◽  
pp. 52
Author(s):  
Chanon Suntara ◽  
Anusorn Cherdthong ◽  
Metha Wanapat ◽  
Suthipong Uriyapongson ◽  
Vichai Leelavatcharamas ◽  
...  

Saccharomyces cerevisiae is a yeast strain often used to improve the feed quality of ruminants. However, S. cerevisiae has limited capacity to provide biomass when inoculated with carbon sources and a low ability to produce cellulase enzymes. Here, we hypothesized that yeast in the rumen produces a large amount of biomass and could release cellulase enzymes to break down fiber content. Therefore, the aim of this study was to screen, isolate and identify yeast from the rumen fluids of Holstein Friesian steers and measure the efficiency of biomass production and cellulase activity. A fermentation medium containing sugarcane molasses as a carbon source and urea as a nitrogen source was optimized. Two fistulated–crossbred Holstein Friesian steers averaging 350 ± 20 kg body weight were used to screen and isolate the ruminal yeast. Two experiments were designed: First, a 12 × 3 × 3 factorial was used in a completely randomized design to determine biomass and carboxymethyl cellulase activity. Factor A was the isolated yeast and S. cerevisiae. Factor B was sugarcane molasses (M) concentration. Factor C was urea (U) concentration. In the second experiment, potential yeasts were selected, identified, and analyzed for 7 × 4 factorial use in a completely randomized design. Factor A was the incubation times. Factor B was the isolated yeast strains, including codes H-Khon Kaen University (KKU) 20 (as P. kudriavzevii-KKU20), I-KKU20 (C. tropicalis-KKU20), and C-KKU20 (as Galactomyces sp.-KKU20). Isolation was imposed under aerobic conditions, resulting in a total of 11 different colonies. Two appearances of colonies including asymmetric colonies of isolated yeast (indicated as A, B, C, E, and J) and ovoid colonies (coded as D, F, G, H, I, and K) were noted. Isolated yeast from the rumen capable of providing a high amount of biomass when inoculant consisted of the molasses 15% + urea 3% (M15 + U3), molasses 25% + urea 1% (M25 + U1), molasses 25% + urea 3% (M25 + U3), and molasses 25% + urea 5% (M25 + U5) when compared to the other media solution (p < 0.01). In addition, 11 isolated biomass-producing yeasts were found in the media solution of M25 + U1. There were 4 isolates cellulase producing yeasts discovered in the media solution of M25 + U1 and M25 + U5 whereas molasses 5% + urea 1% (M5 + U1), molasses 5% + urea 3% (M5 + U3), molasses 5% + urea 5% (M5 + U5), molasses 15% + urea 1% (M15 + U1), molasses 15% + urea 3% (M5 + U3), and M25 + U3 were found with 2, 3, 1, 2, 1, and 2 isolates, respectively. Ruminal yeast strains H-KKU20, I-KKU20, and C-KKU20 were selected for their ability to produce biomass. Identification of isolates H-KKU20 and I-KKU20 revealed that those isolates belonged to Pichia kudriavzevii-KKU20 and Candida tropicalis-KKU20 while C-KKU20 was identified as Galactomyces sp.-KKU20. Two strains provided maximum cell growth: P. kudriavzevii-KKU20 (9.78 and 10.02 Log cell/mL) and C. tropicalis-KKU20 (9.53 and 9.6 Log cells/mL) at 60 and 72 h of incubation time, respectively. The highest ethanol production was observed in S. cerevisiae at 76.4, 77.8, 78.5, and 78.6 g/L at 36, 48, 60, and 72 h of incubation time, respectively (p < 0.01). The P. kudriavzevii-KKU20 yielded the least reducing sugar at about 30.6 and 29.8 g/L at 60 and 72 h of incubation time, respectively. The screening and isolation of yeasts from rumen fluids resulted in 11 different yeasts being obtained. The potential yeasts discovered in the rumen fluid of cattle were Pichia kudriavzevii-KKU20, Candida tropicalis-KKU20, and Galactomyces sp.-KKU20. P. kudriavzevii-KKU20 had higher results than the other yeasts in terms of biomass production, cellulase enzyme activity, and cell number.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


2004 ◽  
Vol 49 (19) ◽  
pp. 3195-3200 ◽  
Author(s):  
Ye-Mei Li ◽  
Xian-Tang Chen ◽  
Jun Li ◽  
Hui-Hong Liu

Zootaxa ◽  
2021 ◽  
Vol 4958 (1) ◽  
pp. 489-502
Author(s):  
FILIPE MICHELS BIANCHI

The Carpocorini are distributed worldwide, and it is one of the most speciose tribes within the Pentatomidae with 127 genera and more than 500 valid species. Recently, Adustonotus Bianchi was described to contain eight species formerly placed within Euschistus Dallas. Among them, Adustonotus grandis (Rolston) and Adustonotus latus (Dallas) are remarkable for their large size. Herein, the phylogenetic position of a new taxon is inferred by a total evidence analysis based on 85 morphological characters and four molecular markers. Adustonotus graziae sp. nov. is described, and is recovered in a polytomic lineage, including A. grandis and A. latus. These species share a solid combination of features that enable them to be separated from the other Adustonotus species (e.g., large size, the humeral angles spatulate and exceptionally produced, and the capsula seminalis shortened). Illustrations of external and internal genitalia, and a distributional map are provided. 


2021 ◽  
Author(s):  
Ksenia Juravel ◽  
Luis Porras ◽  
Sebastian Hoehna ◽  
Davide Pisani ◽  
Gert Wörheide

An accurate phylogeny of animals is needed to clarify their evolution, ecology, and impact on shaping the biosphere. Although multi-gene alignments of up to several hundred thousand amino acids are nowadays routinely used to test hypotheses of animal relationships, some nodes towards the root of the animal phylogeny are proving hard to resolve. While the relationships of the non-bilaterian lineages, primarily sponges (Porifera) and comb jellies (Ctenophora), have received much attention since more than a decade, controversies about the phylogenetic position of the worm-like bilaterian lineage Xenacoelomorpha and the monophyly of the "Superphylum" Deuterostomia have more recently emerged. Here we independently analyse novel genome gene content and morphological datasets to assess patterns of phylogenetic congruence with previous amino-acid derived phylogenetic hypotheses. Using statistical hypothesis testing, we show that both our datasets very strongly support sponges as the sister group of all the other animals, Xenoacoelomorpha as the sister group of the other Bilateria, and largely support monophyletic Deuterostomia. Based on these results, we conclude that the last common animal ancestor may have been a simple, filter-feeding organism without a nervous system and muscles, while the last common ancestor of Bilateria might have been a small, acoelomate-like worm without a through gut.


Zootaxa ◽  
2021 ◽  
Vol 5051 (1) ◽  
pp. 346-386
Author(s):  
SÜPHAN KARAYTUĞ ◽  
SERDAR SAK ◽  
ALP ALPER ◽  
SERDAR SÖNMEZ

An attempt was made to test if Lourinia armata (Claus, 1866)—as it is currently diagnosed—represents a species complex. Detailed examination and comparisons of several specimens collected from different localities suggest that L. armata indeed represents a complex of four closely related morphospecies that can be differentiated from one another by only detailed observations. One of the four species is identified as Lourinia aff. armata and the other three species are described as new to science and named as Lourinia wellsi sp. nov., L. gocmeni sp. nov., and L. aldabraensis sp. nov. Detailed review of previous species records indicates that the genus Lourinia Wilson, 1924 is distributed worldwide. Ceyloniella nicobarica Sewell, 1940, originally described from Nicobar Island and previously considered a junior subjective synonym of L. armata is reinstated as Lourinia nicobarica (Sewell, 1940) comb. nov. on the basis of the unique paddle-shaped caudal ramus seta V. It is postulated that almost all of these records are unreliable in terms of representing true Lourinia aff. armata described herein. On the other hand, the comparative evaluation of the illustrations and descriptions in the published literature indicates the presence of several new species waiting to be discovered in the genus Lourinia.                 It has been determined that, according to updated modern keys, the recent inclusion of the monotypic genus Archeolourinia Corgosinho & Schizas, 2013 in the Louriniidae is not justified since Archeolourinia shermani Corgosinho & Schizas, 2013 does not belong to this family but should be assigned to the Canthocamptidae. On the other hand, it has been argued that the exact phylogenetic position of the Louriniidae still remains problematic since none of the diagnostic characters supports the monophyly of the family within the Oligoarthra. It has also been argued that the close relationship between Louriniidae and Canthocamptidae is supported since both families share the homologous sexual dimorphism (apophysis) on P3 endopod. The most important characteristic that can possibly be used to define Louriniidae is the reduction of maxilliped.  


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 291-307
Author(s):  
Mahdi Shahriarinour ◽  
Mohd Noor Abdul Wahab ◽  
Shuhaimi Mustafa ◽  
Rosfarizan Mohamad ◽  
Arbakariya B. Ariff

The possibility of using treated oil palm empty fruit bunch (OPEFB) fibres as substrate for cellulase production by Aspergillus terreus was studied using shaking flask fermentation. The effect of different chemical pretreatments, i.e. formic acid, acetic acid, propylamine, phosphoric acid, and n-butylamine, on the suitability of OPEFB fibres as fermentation substrate was investigated. The findings revealed that pretreatment with these chemicals significantly (P<0.05) increased the cellulose and reduced the lignin contents prior to enzymatic hydrolysis. However, fermentation using OPEFB fibres pretreated with phosphoric acid gave the highest cellulase production, which was related to high cellulose content. Further improvement in cellulase production was obtained when the chemically pretreated OPEFB fibres were subsequently treated hydrothermally (autoclaved at 160oC for 10 min) and then biologically (using effective microorganisms). The final activity of the three main components of cellulase (FPase, CMCase, and β-glucosidase) obtained in fermentation by A. terreus using optimally treated OPEFB fibres was (0.77 U mL−1, 8.5 U mL-1, and 6.1 U mL-1), respectively. The production of all these three major components of cellulase using pretreated OPEFB fibres (i.e. chemical, hydrothermal, and biological) were about three times higher than those obtained from fermentation using untreated OPEFB fibres.


Sign in / Sign up

Export Citation Format

Share Document