Comparative tolerance to low pH of three life stages of the crayfish Orconectes virilis

1984 ◽  
Vol 62 (12) ◽  
pp. 2360-2363 ◽  
Author(s):  
R. L. France

The response of three life cycle stages of Orconectes virilis to acidification was investigated in the laboratory. Chronic lethality tests revealed that compared with 2-week-old stage III hatchlings, 2.5-month-old juveniles were seven times more tolerant to acid but only one-twentieth as tolerant as 2- to 3-year-old adults. Juvenile crayfish recovered following exposure to acid stress (pH < 3.5). Comparison of laboratory survival results with data from the literature concerning the magnitude and duration of chemical fluctuations indicates that lentic populations of O. virilis are not likely to decline as a result of episodic acid events. Nevertheless, gradual acidification of a lake to an average annual pH below 5.5 could result in eventual population extinction as a result of mortality of the young.

Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ainara Ballesteros ◽  
Carina Östman ◽  
Andreu Santín ◽  
Macarena Marambio ◽  
Mridvika Narda ◽  
...  

Pelagia noctiluca is considered the most important jellyfish in the Mediterranean Sea, due to its abundance and the severity of its stings. Despite its importance in marine ecosystems and the health problems caused by its massive arrival in coastal areas, little is known about its early life stages and its cnidome has never been described. This study of the morphological and anatomical features throughout the life cycle identifies four early stages: two ephyra and two metaephyra stages. Ephyra stage 1, newly developed from a planula, has no velar canals, gastric filaments or nematocyst batteries. Ephyra stage 2, has velar canals, a cruciform-shaped manubrium and gastric filaments. Metaephyra stage 3 has eight tentacle buds and nematocyst clusters for the first time. Lastly, in metaephyra stage 4, the eight primary tentacles grow nearly simultaneously, with no secondary tentacles. Complete nematocyst battery patterns gradually develop throughout the later life stages. Four nematocyst types are identified: a-isorhiza, A-isorhiza, O-isorhiza and eurytele. Of these, a-isorhiza and eurytele are the most important throughout the entire life cycle, while A-isorhiza and O-isorhiza have a more important role in advanced stages. All nematocysts show a positive correlation between increasing capsule volumes and increasing body diameter of the ephyrae, metaephyrae, young medusae and adult medusae. In the early stages, the volumes of euryteles in the gastric filaments are larger than those in the exumbrella, indicating that the capsule volume is critical in the absence of marginal tentacles, specialized for feeding. This study provides updated information, the most extensive description to date, including high-resolution photographs and schematic drawings of all the developmental stages in the life cycle of P. noctiluca. Additionally, the first cnidome characterization is provided for each stage to facilitate accurate identification of this species when collected in the water column, and to raise awareness of the potential for human envenomation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xinyu Yu ◽  
Gaoqian Feng ◽  
Qingfeng Zhang ◽  
Jun Cao

Advances in research over the past few decades have greatly improved metabolomics-based approaches in studying parasite biology and disease etiology. This improves the investigation of varied metabolic requirements during life stages or when following transmission to their hosts, and fulfills the demand for improved diagnostics and precise therapeutics. Therefore, this review highlights the progress of metabolomics in malaria research, including metabolic mapping of Plasmodium vertebrate life cycle stages to investigate antimalarials mode of actions and underlying complex host-parasite interactions. Also, we discuss current limitations as well as make several practical suggestions for methodological improvements which could drive metabolomics progress for malaria from a comprehensive perspective.


2018 ◽  
Vol 285 (1871) ◽  
pp. 20172304 ◽  
Author(s):  
Ronald M. Bonett ◽  
John G. Phillips ◽  
Nicholus M. Ledbetter ◽  
Samuel D. Martin ◽  
Luke Lehman

Life cycle strategies have evolved extensively throughout the history of metazoans. The expression of disparate life stages within a single ontogeny can present conflicts to trait evolution, and therefore may have played a major role in shaping metazoan forms. However, few studies have examined the consequences of adding or subtracting life stages on patterns of trait evolution. By analysing trait evolution in a clade of closely related salamander lineages we show that shifts in the number of life cycle stages are associated with rapid phenotypic evolution. Specifically, salamanders with an aquatic-only (paedomorphic) life cycle have frequently added vertebrae to their trunk skeleton compared with closely related lineages with a complex aquatic-to-terrestrial (biphasic) life cycle. The rate of vertebral column evolution is also substantially lower in biphasic lineages, which may reflect the functional compromise of a complex cycle. This study demonstrates that the consequences of life cycle evolution can be detected at very fine scales of divergence. Rapid evolutionary responses can result from shifts in selective regimes following changes in life cycle complexity.


1985 ◽  
Vol 63 (11) ◽  
pp. 2586-2589 ◽  
Author(s):  
Michael Berrill ◽  
Lois Hollett ◽  
Arlene Margosian ◽  
Jeff Hudson

We compared the tolerance of three common Ontario crayfish species to low pH under natural and laboratory conditions in water varying in aluminum concentration and hardness. Both transplant and laboratory experiments indicated that exposure to a pH range of 5.4–6.1 in soft water was toxic to attached juvenile stages of Orconectes rusticus and O. propinquus but not to females carrying the broods. In contrast, stage III juveniles of Cambarus robustus molted and survived in soft water at pH 4. Cambarus robustus is clearly far less sensitive to low pH stress than the two Orconectes species. No increased mortality due to the presence of elevated aluminum occurred among stage III juveniles of the three species exposed to pH 4.5–5.0 in soft water. Physiological differences, augmented by differences in life cycle, may account for the continued presence of C. robustus in acid-stressed lakes and streams.


2009 ◽  
Vol 75 (10) ◽  
pp. 3366-3369 ◽  
Author(s):  
Sophie Richier ◽  
Marie-Emmanuelle Kerros ◽  
Colomban de Vargas ◽  
Liti Haramaty ◽  
Paul G. Falkowski ◽  
...  

ABSTRACT The expression of genes of biogeochemical interest in calcifying and noncalcifying life stages of the coccolithophore Emiliania huxleyi was investigated. Transcripts potentially involved in calcification were tested through a light-dark cycle. These transcripts were more abundant in calcifying cells and were upregulated in the light. Their application as potential candidates for in situ biogeochemical proxies is also suggested.


2021 ◽  
Author(s):  
Shaonil Binti ◽  
Rosa V Melinda ◽  
Braveen B Joseph ◽  
Phil T Edeen ◽  
Sam D Miller ◽  
...  

Molting is a widespread feature in the development of many invertebrates, including nematodes and arthropods. In Caenorhabditis elegans, the highly conserved protein kinases NEKL-2/NEK8/9 and NEKL-3/NEK6/7 (NEKLs) promote molting through their involvement in the uptake and intracellular trafficking of epidermal cargos. We found that the relative requirements for NEKL-2 and NEKL-3 differed at different life-cycle stages and under different environmental conditions. Most notably, the transition from the second to the third larval stage (L2-to-L3 molt) required a higher level of NEKL function than during several other life stages or when animals had experienced starvation at the L1 stage. Specifically, larvae that entered the pre-dauer L2d stage could escape molting defects when transiting to the (non-dauer) L3 stage. Consistent with this, mutations that promote entry into L2d suppressed nekl-associated molting defects, whereas mutations that inhibit L2d entry reduced starvation-mediated suppression. We further showed that loss or reduction of NEKL functions led to defects in the transcription of cyclically expressed molting genes, many of which are under the control of systemic steroid hormone regulation. Moreover, the timing and severity of these transcriptional defects correlated closely with the strength of nekl alleles and with their stage of arrest. Interestingly, transit through L2d rescued nekl-associated expression defects in suppressed worms, providing an example of how life-cycle decisions can impact subsequent developmental events. Given that NEKLs are implicated in the uptake of sterols by the epidermis, we propose that loss of NEKLs leads to a physiological reduction in steroid-hormone signaling and consequent defects in the transcription of genes required for molting.


2019 ◽  
Vol 0 (3) ◽  
pp. 53-60 ◽  
Author(s):  
T.Yu. Altufyeva ◽  
◽  
P.A. Ivanov ◽  
G.R. Sakhapova ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document