The distribution, cellular structure, and metabolism of adipose tissue in the fin whale, Balaenoptera physalus

1988 ◽  
Vol 66 (2) ◽  
pp. 534-537 ◽  
Author(s):  
Caroline M. Pond ◽  
Christine A. Mattacks

The gross mass, mean adipocyte volume, and hexokinase and phosphofructokinase activities of blubber and internal adipose tissue were measured from fin whales (Balaenoptera physalus) caught in the North Atlantic west of Iceland. Fin whale adipocytes are smaller but more numerous than predictions from allometric equations relating adipose tissue structure to body mass, but the deviations are no greater than those of some terrestrial mammals, including humans. Significant activity of the glycolytic enzymes was measured from all adipose tissue samples except those around the eyeball; the activities of hexokinase and phosphofructokinase measured at room temperature are only slightly lower in the blubber than in the internal adipose depots. There was little evidence for metabolic correlates of the site-specific differences in the structure and chemistry of blubber. The highest capacity for glucose utilization was measured in adipose tissue from depots in the neck and the thorax, both of which may contain thermogenic tissue in neonates.

2019 ◽  
Vol 100 (5) ◽  
pp. 1653-1670 ◽  
Author(s):  
Frederick I Archer ◽  
Robert L Brownell ◽  
Brittany L Hancock-Hanser ◽  
Phillip A Morin ◽  
Kelly M Robertson ◽  
...  

Abstract Three subspecies of fin whales (Balaenoptera physalus) are currently recognized, including the northern fin whale (B. p. physalus), the southern fin whale (B. p. quoyi), and the pygmy fin whale (B. p. patachonica). The Northern Hemisphere subspecies encompasses fin whales in both the North Atlantic and North Pacific oceans. A recent analysis of 154 mitogenome sequences of fin whales from these two ocean basins and the Southern Hemisphere suggested that the North Pacific and North Atlantic populations should be treated as different subspecies. Using these mitogenome sequences, in this study, we conduct analyses on a larger mtDNA control region data set, and on 23 single-nucleotide polymorphisms (SNPs) from 144 of the 154 samples in the mitogenome data set. Our results reveal that North Pacific and North Atlantic fin whales can be correctly assigned to their ocean basin with 99% accuracy. Results of the SNP analysis indicate a correct classification rate of 95%, very low rates of gene flow among ocean basins, and that distinct mitogenome matrilines in the North Pacific are interbreeding. These results indicate that North Pacific fin whales should be recognized as a separate subspecies, with the name B. p. velifera Cope in Scammon 1869 as the oldest available name.


1969 ◽  
Vol 47 (1) ◽  
pp. 95-97 ◽  
Author(s):  
B. H. Lauer ◽  
B. E. Baker

Milk was obtained from a fin whale which was killed in the North Atlantic and from a beluga whale which was killed in Hudson Bay. The gross composition and fatty acid constitution of the milks were determined.


2017 ◽  
Vol 3 ◽  
Author(s):  
LAETITIA LEMPEREUR ◽  
MORGAN DELOBELLE ◽  
MARJAN DOOM ◽  
JAN HAELTERS ◽  
ETIENNE LEVY ◽  
...  

SUMMARY On 9 November 2015, a juvenile male fin whale of 11·60 m length was observed on the bulb of a merchant vessel in the Channel Terneuzen – Ghent (The Netherlands – Belgium). A severe parasitosis was present in the right heart ventricle and caudal caval vein. Parasites were identified as Crassicauda boopis based on macroscopic and microscopic observations. The sequence of the 18S rRNA gene obtained from the parasite samples was 100% similar to the sequence of the 18S rRNA gene from Crassicauda magna available on GenBank. While adults of C. boopis and C. magna are morphologically distinct and found at different locations in the body, the molecular analysis of the 18S rRNA gene seems insufficient for reliable species identification. Although numerous C. boopis were found, the cause of death was identified as due to the collision with the ship, as suggested by the presence of a large haematoma, and the absence of evidence of renal failure. The young age of this whale and the absence of severe chronic reaction may suggest that the infestation was not yet at an advanced chronic stage.


1986 ◽  
Vol 22 (3) ◽  
pp. 389-396 ◽  
Author(s):  
Richard H. Lambertsen ◽  
Bryndis Birnir ◽  
John E. Bauer

1992 ◽  
Vol 134 (3) ◽  
pp. 405-413 ◽  
Author(s):  
J. M. Kjeld ◽  
J. Sigurjónsson ◽  
A. Árnason

ABSTRACT Blood serum concentrations of testosterone and progesterone were measured in postmortem samples taken at sea from 814 fin whales (Balaenoptera physalus) caught during the summers (June–September) of 1981–1989. The ages of 781 of these animals were also assessed. The testosterone concentrations in samples from 352 males averaged 2 nmol/l; 41 samples had concentrations of 0·1 nmol/l or lower and 34 of these came from whales aged between 2 and 14 years and showed a Gaussian type of age distribution with a peak number at 7 to 8 years. The mean testosterone concentrations in the males increased by more than fourfold between June and August. Serum progesterone concentrations of the 462 females fell into three separate groups: (1) group I with values ≤ 0·1 nmol/l; (2) group II with intermediate values of > 0·1 nmol/l but <10 nmol/l; (3) group III with values of ≥ 10 nmol/l. These three groups of females seemed to consist respectively of young sexually immature females, mature non-pregnant females and pregnant females. The age distribution in the groups indicated that puberty in females is attained chiefly between the ages of 7 and 10. The yearly pregnancy rate (that percentage of all females caught and studied in a year which had progesterone values ≥10 nmol/l) was between 35% and 55%, except in 1987 when it was 67%. The yearly pregnancy rate would range from 56% to 93% if only mature females (i.e. those with serum progesterone >0·1 nmol/l) were considered. Serum oestradiol concentrations in male and female fin whales had no relation to age, sex or pregnancy. Journal of Endocrinology (1992) 134, 405–413


2019 ◽  
Vol 6 (8) ◽  
pp. 181800 ◽  
Author(s):  
Mónica A. Silva ◽  
Asunción Borrell ◽  
Rui Prieto ◽  
Pauline Gauffier ◽  
Martine Bérubé ◽  
...  

Knowing the migratory movements and behaviour of baleen whales is fundamental to understanding their ecology. We compared δ 15 N and δ 13 C values in the skin of blue ( Balaenoptera musculus ), fin ( Balaenoptera physalus ) and sei ( Balaenoptera borealis ) whales sighted in the Azores in spring with the values of potential prey from different regions within the North Atlantic using Bayesian mixing models to investigate their trophic ecology and migration patterns. Fin whale δ 15 N values were higher than those recorded in blue and sei whales, reflecting feeding at higher trophic levels. Whales' skin δ 15 N and δ 13 C values did not reflect prey from high-latitude summer foraging grounds; instead mixing models identified tropical or subtropical regions as the most likely feeding areas for all species during winter and spring. Yet, differences in δ 13 C values among whale species suggest use of different regions within this range. Blue and sei whales primarily used resources from the Northwest African upwelling and pelagic tropical/subtropical regions, while fin whales fed off Iberia. However, determining feeding habitats from stable isotope values remains difficult. In conclusion, winter feeding appears common among North Atlantic blue, fin and sei whales, and may play a crucial role in determining their winter distribution. A better understanding of winter feeding behaviour is therefore fundamental for the effective conservation of these species.


2021 ◽  
Vol 9 (6) ◽  
pp. 646
Author(s):  
Andreia Pereira ◽  
Miriam Romagosa ◽  
Carlos Corela ◽  
Mónica A. Silva ◽  
Luis Matias

Source level is one factor that determines the effectiveness of animal signal transmissions and their acoustic communication active space. Ocean-bottom seismometers (OBS) are platforms of opportunity to monitor marine species because they record data as pressure fluctuations in the water using a hydrophone and/or as particle velocity of the seabed using a seismometer. This study estimates source levels of 20 Hz fin whale notes recorded simultaneously in these two OBS channels and in two areas of the North Atlantic (Azores and southwest Portugal). It also discusses factors contributing to the variability of the estimates, namely geographical (deployment areas), instrumental (recording channels and sample size), and temporal factors (month of detected notes, inter-note interval, and diving duration). The average source level was 196.9 dB re 1 µPa m for the seismometer (derived from particle velocity measurements) and 186.7 dB re 1 µPa m for the hydrophone. Variability was associated with sample size, instrumental characteristics, acoustic propagation, and month of recordings. Source level estimates were very consistent throughout sequences, and there was no indication of geographical differences. Understanding what causes variation in animal sound source levels provides insights into the function of sounds and helps to assess the potential effects of increasing anthropogenic noise.


Sign in / Sign up

Export Citation Format

Share Document