Begging behaviour and its energetic cost in great spotted cuckoo and magpie host chicks

1999 ◽  
Vol 77 (11) ◽  
pp. 1794-1800 ◽  
Author(s):  
Manuel Soler ◽  
Juan J Soler ◽  
Juan G Martínez ◽  
Juan Moreno

Begging is one of the main factors governing food delivery to chicks by adult birds and it is of great importance in studies of biological communication theory. Many theoretical models have been proposed to explain the evolution of this noisy and conspicuous behaviour, all of which assume that begging activity is energetically costly. We show that both great spotted cuckoo (Clamator glandarius) brood-parasitic chicks and magpie (Pica pica) host chicks ceased to beg after ingesting enough food, and that great spotted cuckoo chicks emitted more begging calls and begged for much longer than did magpie chicks. Using the doubly labelled water method to measure the daily energy expenditure of begging and nonbegging chicks in the laboratory, we show that begging behaviour consumes only a small quantity of oxygen compared with other avian activities usually assumed to be energetically costly.

Paleobiology ◽  
2002 ◽  
Vol 28 (3) ◽  
pp. 328-342 ◽  
Author(s):  
Lindsey R. Leighton

Accurate estimates of predation intensity, the frequency of mortality from predation, are critical to studies of the evolution of species in response to predation, and to studies of predator-prey systems in general. Most commonly used indirect proxies for predation intensity in the fossil record have logistical or theoretical problems. Direct proxies, using actual traces of predatory activity, such as drilling and repair scars, may hold more promise. However, these direct proxies often have been used in conjunction with optimal foraging models, and in this context, the underlying assumptions and predictions of optimal foraging are examined.Results from theoretical models using optimal foraging suggest that (1) the ratio of internal shell volume to shell thickness of prey (benefit/cost ratio) may be a questionable measurement of prey “value” to the predator, as it fails to account adequately for energetic cost to the predator during pursuit and grappling; (2) drilling and repair frequency are invalid measures of prey preference, because optimal foraging predicts that specific prey types are either always taken or always ignored; (3) pooled drilling frequency will not be a useful metric of predation intensity in systems in which the predator need not always drill; and (4) an increase in repair frequency can be a consequence of either an increase or a decrease in predation intensity.Although drilling frequency may not indicate prey preference, it is a valid proxy for selection due to predation. An approach using size classes, in which the minimum size at which a predation refuge is achieved, is suggested for use with repair frequency.


2013 ◽  
Vol 9 (1) ◽  
pp. 20120919 ◽  
Author(s):  
Kyle H. Elliott ◽  
Maryline Le Vaillant ◽  
Akiko Kato ◽  
John R. Speakman ◽  
Yan Ropert-Coudert

Animal ecology is shaped by energy costs, yet it is difficult to measure fine-scale energy expenditure in the wild. Because metabolism is often closely correlated with mechanical work, accelerometers have the potential to provide detailed information on energy expenditure of wild animals over fine temporal scales. Nonetheless, accelerometry needs to be validated on wild animals, especially across different locomotory modes. We merged data collected on 20 thick-billed murres ( Uria lomvia ) from miniature accelerometers with measurements of daily energy expenditure over 24 h using doubly labelled water. Across three different locomotory modes (swimming, flying and movement on land), dynamic body acceleration was a good predictor of daily energy expenditure as measured independently by doubly labelled water ( R 2 = 0.73). The most parsimonious model suggested that different equations were needed to predict energy expenditure from accelerometry for flying than for surface swimming or activity on land ( R 2 = 0.81). Our results demonstrate that accelerometers can provide an accurate integrated measure of energy expenditure in wild animals using many different locomotory modes.


Behaviour ◽  
1985 ◽  
Vol 94 (1-2) ◽  
pp. 1-39 ◽  
Author(s):  
Judy Stamps ◽  
Anne Clark ◽  
Pat Arrowood ◽  
Barbara Kus

AbstractDespite widespread theoretical interest in genetic conflict between parents and offspring, there is little empirical evidence that it exists in nature. Theoretical models suggest two outcomes of conflict not predicted by alternate theories: (1) offspring that control the allocation of parental investment might show escalated demand behaviours (e.g., begging) and demand more resources than they could efficiently use and (2) parents might evolve behavioural counterstrategies which prevented offspring from obtaining extra resources, but which were more costly than a "laissez-faire" parental strategy allowing offspring control. These predictions were tested in budgerigars, (Melopsittacus undulatus) in large flight cages at Davis, California. Budgerigar clutches hatch extremely asynchronously, yet all nestlings grew at similar rates and fledged at similar sizes and ages. This independence of hatch order and performance seemed due primarily to the mother budgerigar's allofeeding strategy: females allofed offspring mainly on the basis of size, and only secondarily attended to begging rate. Offspring of a given age and size were treated the same by their mothers regardless of hatch order, and offspring undersized for their age were fed as if they were younger. In contrast, male budgerigars attended to offspring begging rates. Males tended to initiate feeding bouts when offspring begged, and to allofeed vigorous beggers more often. Variance in male allofeeding behaviour allowed comparisons of size-matched families in which females performed nearly all of the allofeeds to nestlings (= female-fed families) with families in which males and females both allofed nestlings (= male-aided families). The parent controlled the allocation of food in female-fed families, while offspring had greater control over food allocation in male-fed families. As was predicted by conflict theory, the female counterstrategy was effective but potentially costly: the food delivery rate of females was only half as fast as males'. Conversely, offspring control resulted in an escalation of beg rate for the same degree of need (as measured by size and growth), and male-aided offspring obtained nearly three times more regurgitations than female-fed nestlings, yet grew at comparable rates and fledged at comparable sizes and ages. Hence, offspring demanded and obtained more food than they could effectively use. Other avian parents also seem to use effective but potentially costly counterstrategies, and other avian offspring may demand more food than they require. Even if initial hatch asynchronies functioned in brood reduction, the parental strategies described here would allow parents to retain control over the timing and conditions for offspring loss.


1995 ◽  
Vol 37 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Manuel Soler ◽  
Juan Gabriel Martinez ◽  
Juan Jose Soler ◽  
Anders Pape Møller

2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjoy K. Deb ◽  
Eimear Dolan ◽  
Catherine Hambly ◽  
John R. Speakman ◽  
Olav Eftedal ◽  
...  

Commercial saturation divers are exposed to unique environmental conditions and are required to conduct work activity underwater. Consequently, divers’ physiological status is shown to be perturbed and therefore, appropriate strategies and guidance are required to manage the stress and adaptive response. This study aimed to evaluate the daily energy expenditure (DEE) of commercial saturation divers during a 21-day diving operation in the North Sea. Ten saturation divers were recruited during a diving operation with a living depth of 72 metres seawater (msw) and a maximum working dive depth of 81 msw. Doubly labelled water (DLW) was used to calculate DEE during a 10-day measurement period. Energy intake was also recorded during this period by maintaining a dietary log. The mean DEE calculated was 3030.9 ± 513.0 kcal/day, which was significantly greater than the mean energy intake (1875.3 ± 487.4 kcal; p = 0.005). There was also a strong positive correction correlation between DEE and total time spent performing underwater work (r = 0.7, p = 0.026). The results suggested saturation divers were in a negative energy balance during the measurement period with an intraindividual variability in the energy cost present that may be influenced by time spent underwater.


1991 ◽  
Vol 157 (1) ◽  
pp. 123-132 ◽  
Author(s):  
J. R. Speakman ◽  
P. A. Racey ◽  
A. M. Burnett

The effects of the doubly labelled water technique (intraperitoneal injection, temporary food deprivation and blood sampling) on the energy expenditure, food intake and behaviour of 18 white (MF1) mice was investigated. There were no significant differences in mean energy expenditure or food intake between experimental and control animals, on which the techniques were not performed, over the first 24 h after manipulation. These data indicate that there are no direct metabolic consequences associated with the procedures. During the 100 min immediately after blood sampling, the behaviour of experimental animals involved significantly more grooming, mostly at the site of the blood sample wound, more feeding and more general activity, at the expense of resting, when compared with controls. Twenty hours later the behavioural differences were less marked, but still statistically significantly different, and reversed: experimental animals spent more time resting and less in general activity or feeding. The effects of the technique on the behaviour of white mice had trivial consequences for their daily energy expenditure. This may reflect the restricted behavioural repertoire of these captive animals within respirometry chambers. The effect on wild animals may be more profound and requires investigation.


Sign in / Sign up

Export Citation Format

Share Document