scholarly journals The isotropic Compton profile difference across the phase transition of VO2

2018 ◽  
Vol 91 (10) ◽  
Author(s):  
Kari O. Ruotsalainen ◽  
Juho Inkinen ◽  
Tuomas Pylkkänen ◽  
Thomas Buslaps ◽  
Mikko Hakala ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
N. Munjal ◽  
M. C. Mishra ◽  
G. Sharma ◽  
B. K. Sharma

The electron momentum density distribution and phase transition in ZnS are reported in this paper. The calculations are performed on the basis of density functional theory (DFT) based on the linear combination of atomic orbitals (LCAO) method. To compare the theoretical Compton profile, the measurement on polycrystalline ZnS has been made using a Compton spectrometer employing 59.54 keV gamma rays. The spherically averaged theoretical Compton profile is in agreement with the measurement. On the basis of equal valence-electron-density Compton profiles, it is found that ZnS is less covalent as compared to ZnSe. The present study suggests zincblende (ZB) to rocksalt (RS) phase transition at 13.7 GPa. The calculated transition pressure is found in good agreement with the previous investigations.


1994 ◽  
Vol 375 ◽  
Author(s):  
C. J. Yahnke ◽  
G. Srajer ◽  
D. R. Haeffner ◽  
D. M. Mills ◽  
L. Assoufid

AbstractWe have measured the magnetic Compton profile (MCP) of ordered and disordered Fe 3Pt samples both above and below their Curie temperature. From these measurements, we have determined the average moment per atom at room temperature to be 2.81μB ± 0.04μB for disordered Fe3Pt and 1.78μB ± 0.05μB for ordered Fe3Pt. At temperatures above Tc, we measured a substantial reduction in the moment (0.6μB ± 0.10μB for disordered Fe3Pt and 0.64μB ± 0.13μB ± for ordered Fe3Pt) and a change in the shape of the MCP. This suggests that the mechanism behind the Invar effect in Fe3Pt can be described by a high-spin to low-spin magnetic phase transition. The experimental MCPs for both ordered and disordered Fe3 Pt are analyzed within the framework of the Weiss 2γ model.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


Author(s):  
David C. Martin ◽  
Jun Liao

By careful control of the electron beam it is possible to simultaneously induce and observe the phase transformation from monomer to polymer in certain solid-state polymcrizable diacetylenes. The continuous change in the crystal structure from DCHD diacetylene monomer (a=1.76 nm, b=1.36 nm, c=0.455 nm, γ=94 degrees, P2l/c) to polymer (a=1.74 nm, b=1.29 nm, c=0.49 nm, γ=108 degrees, P2l/c) occurs at a characteristic dose (10−4C/cm2) which is five orders of magnitude smaller than the critical end point dose (20 C/cm2). Previously we discussed the progress of this phase transition primarily as observed down the [001] zone (the chain axis direction). Here we report on the associated changes of the dark field (DF) images and selected area electron diffraction (SAED) patterns of the crystals as observed from the side (i.e., in the [hk0] zones).High resolution electron micrographs (HREM), DF images, and SAED patterns were obtained on a JEOL 4000 EX HREM operating at 400 kV.


1982 ◽  
Vol 85 (1) ◽  
pp. 297-303 ◽  
Author(s):  
A. D. Bandrauk ◽  
K. D. Truong ◽  
S. Jandl

Sign in / Sign up

Export Citation Format

Share Document