scholarly journals Greybody factor and power spectra of the Hawking radiation in the 4D Einstein–Gauss–Bonnet de-Sitter gravity

Author(s):  
Cheng-Yong Zhang ◽  
Peng-Cheng Li ◽  
Minyong Guo

AbstractA novel 4D Einstein–Gauss–Bonnet gravity was recently formulated by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. Although this theory may run into trouble at the level of action or equations of motion, the spherically symmetric black hole solution, which can be successfully reproduced in those consistent theories of 4D EGB gravity, is still meaningful and worthy of study. In this paper, we investigate Hawking radiation in the spacetime containing such a de Sitter black hole. Both the greybody factor and the power spectra of the Hawking radiation of the massless scalar are studied numerically for the full range of various parameters, including the GB coupling constant $$\alpha $$ α , the cosmological constant $$\Lambda $$ Λ and the coupling constant related to the scalar filed $$\xi $$ ξ . In particular, we find a negative $$\alpha $$ α leads to a larger greybody factor than that of a $$\alpha \ge 0$$ α ≥ 0 . While, for the power spectra of the Hawking radiation the situation is quite the opposite. The reason is that the temperature of the black hole would be very high when $$\alpha <0$$ α < 0 . Actually, we observe that the temperature would be arbitrarily high when $$\alpha $$ α approaches to the lower bound.

2012 ◽  
Vol 27 (04) ◽  
pp. 1250010
Author(s):  
BAI SHENG LIU ◽  
JING YI ZHANG

In the paper, the tunneling framework is applied to calculate the local horizons of Vaidya–de Sitter black holes and Vaidya–Bonner–de Sitter black holes. The researches show that the quantum ergosphere of a spherically symmetric black hole is identical with the potential barrier set by the tunneling process. The calculations also indicate that both the apparent horizons of the dynamic de Sitter black hole produce Hawking radiation. The conclusions can be applicable to either the charged or uncharged particles' Hawking radiation.


Author(s):  
Hüseyi̇n Aydın ◽  
Meli̇s Ulu Dog̃ru

In this paper, we examine massless scalar field by using unimodular [Formula: see text] theory. It is taken into account unimodular and cylindrically symmetric spacetime which provides convenience in researching black hole. The field equations in unimodular [Formula: see text] theory for given spacetime with massless scalar field and additional Bianchi identities are solved. Cylindrically symmetric anti-de Sitter (AdS)–Schwarzschild-like and AdS–Reissner–Nordström-like black hole spacetimes are achieved. Equations of motion are derived by using Hamiltonian. Orbits of massless test particles are depicted. Obtained line element asymptotically converges to dS/AdS spacetime. Weak and strong energy conditions of the massless scalar field are obtained with Raychaudhuri equations in unimodular [Formula: see text] theory. Also, stiff fluid interpretation of scalar field is reviewed.


2015 ◽  
Vol 30 (11) ◽  
pp. 1550057 ◽  
Author(s):  
Sharmanthie Fernando

In this paper, we have studied a black hole in de Sitter space which has a conformally coupled scalar field in the background. This black hole is also known as the MTZ black hole. We have obtained exact values for the quasi-normal mode (QNM) frequencies under massless scalar field perturbations. We have demonstrated that when the black hole is near-extremal, that the wave equation for the massless scalar field simplifies to a Schrödinger type equation with the well-known Pöschl–Teller potential. We have also used sixth-order WKB approximation to compute QNM frequencies to compare with exact values obtained via the Pöschl–Teller method for comparison. As an application, we have obtained the area spectrum using modified Hods approach and show that it is equally spaced.


2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2007 ◽  
Vol 22 (24) ◽  
pp. 4451-4465 ◽  
Author(s):  
MOLIN LIU ◽  
HONGYA LIU ◽  
CHUNXIAO WANG ◽  
YONGLI PING

The Nariai black hole, whose two horizons are lying close to each other, is an extreme and important case in the research of black hole. In this paper we study the evolution of a massless scalar field scattered around in 5D Schwarzschild–de Sitter black string space. Using the method shown by Brevik and Simonsen (2001) we solve the scalar field equation as a boundary value problem, where real boundary condition is employed. Then with convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients (R, T) are obtained. At last, we also compare the coefficients with the usual 4D counterpart.


2020 ◽  
Vol 29 (05) ◽  
pp. 2050032
Author(s):  
Shuang Yu ◽  
Changjun Gao

We construct exact black hole solutions to Einstein gravity with nonlinear electrodynamic field. In these solutions, there are, in general, four parameters. They are physical mass, electric charge, cosmological constant and the coupling constant. These solutions differ significantly from the Reissner–Nordström–de Sitter solution in Einstein–Maxwell gravity with a cosmological constant, due to the presence of coupling constant. For example, some of them are endowed with a topological defect on angle [Formula: see text] and the electric charge of some can be much larger or smaller than their mass by varying the coupling constant. On the other hand, these spacetimes are all asymptotically de Sitter (or anti-de Sitter). As a result, their causal structure is similar to the Reissner–Nordström–de Sitter spacetime. Finally, the investigations on the thermodynamics reveal that the coupling constant except for solution-4 has the opposite effect as temperature on the phase, structure of black holes. Concretely, the phase-space changes from single phase to three phases with the decrease of temperature. On the contrary, it changes from three phases to a single phase with the decrease of coupling constant.


2017 ◽  
Vol 119 (3) ◽  
pp. 30005 ◽  
Author(s):  
A. S. Sefiedgar ◽  
A. Ashrafinejad

2020 ◽  
Vol 29 (07) ◽  
pp. 2050048
Author(s):  
Xin-Yang Wang ◽  
Yi-Ru Wang ◽  
Wen-Biao Liu

Based on the definition of the interior volume of spherically symmetry black holes, the interior volume of Schwarzschild–(Anti) de Sitter black holes is calculated. It is shown that with the cosmological constant ([Formula: see text]) increasing, the changing behaviors of both the position of the largest hypersurface and the interior volume for the Schwarzschild–Anti de Sitter black hole are the same as the Schwarzschild–de Sitter black hole. Considering a scalar field in the interior volume and Hawking radiation with only energy, the evolution relation between the scalar field entropy and Bekenstein–Hawking entropy is constructed. The results show that the scalar field entropy is approximately proportional to Bekenstein–Hawking entropy during Hawking radiation. Meanwhile, the proportionality coefficient is also regarded as a constant approximately with the increasing [Formula: see text]. Furthermore, considering [Formula: see text] as a dynamical variable, the modified Stefan–Boltzmann law is proposed which can be used to describe the variation of both the mass and [Formula: see text] under Hawking radiation. Using this modified law, the evolution relation between the two types of entropy is also constructed. The results show that the coefficient for Schwarzschild–de Sitter black holes is closer to a constant than the one for Schwarzschild–Anti de Sitter black holes during the evaporation process. Moreover, we find that for Hawking radiation carrying only energy, the evolution relation is a special case compared with the situation that the mass and [Formula: see text] are both considered as dynamical variables.


2013 ◽  
Vol 28 (18) ◽  
pp. 1350084 ◽  
Author(s):  
BOBBY E. GUNARA ◽  
FREDDY P. ZEN ◽  
FIKI T. AKBAR ◽  
AGUS SUROSO ◽  
ARIANTO

In this paper, we study several aspects of extremal spherical symmetric black hole solutions of four-dimensional N = 1 supergravity coupled to vector and chiral multiplets with the scalar potential turned on. In the asymptotic region, the complex scalars are fixed and regular which can be viewed as the critical points of the black hole and the scalar potentials with vanishing scalar charges. It follows that the asymptotic geometries are of a constant and nonzero scalar curvature which are generally not Einstein. These spaces could also correspond to the near horizon geometries which are the product spaces of a two anti-de Sitter surface and the two sphere if the value of the scalars in both regions coincide. In addition, we prove the local existence of nontrivial radius dependent complex scalar fields which interpolate between the horizon and the asymptotic region. We finally give some simple ℂn-models with both linear superpotential and gauge couplings.


Sign in / Sign up

Export Citation Format

Share Document