scholarly journals Holographic entanglement of purification near a critical point

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
B. Amrahi ◽  
M. Ali-Akbari ◽  
M. Asadi

AbstractIn the presence of finite chemical potential $$\mu $$ μ , we holographically compute the entanglement of purification in a $$2+1$$ 2 + 1 - and $$3+1$$ 3 + 1 -dimensional field theory and also in a $$3+1$$ 3 + 1 -dimensional field theory with a critical point, at which a phase transition takes place. We observe that compared to $$2+1$$ 2 + 1 - and $$3+1$$ 3 + 1 -dimensional field theories, the behavior of entanglement of purification near critical point is different and it is not a monotonic function of $$\frac{\mu }{T}$$ μ T where T is the temperature of the field theory. Therefore, the entanglement of purification distinguishes the critical point in the field theory. We also discuss the dependence of the holographic entanglement of purification on the various parameters of the theories. Moreover, the critical exponent is calculated.

2005 ◽  
Vol 20 (35) ◽  
pp. 2711-2721 ◽  
Author(s):  
ZONG-QIANG SHENG ◽  
JIAN-YOU GUO

The shape phase transition between spherical U (5) and axially deformed SU (3) nuclei is investigated systemically for the rare-earth region nuclei by the constrained relativistic mean field theory with the interactions NL3. The properties of ground state for Nd , Gd and Dy isotopes are described fairly well as compared with experiments. By examining the potential energy curve and quadruple deformation β2 obtained with this microscopic approach, the possible critical point nuclei are suggested to be 148,150 Nd for Nd isotopes, but 148 Nd is the best candidate, and 150 Nd is slightly to the rotor side of the phase transition. For Gd and Dy isotopes, 150,152 Gd and 152,154 Dy are suggested to be the critical point nuclei. Similar conclusions are also drawn from the microscopic neutron single particle spectra.


2020 ◽  
Vol 6 (2) ◽  
pp. 134-148
Author(s):  
R. K. Rai ◽  
G. C. Kaphle ◽  
R. B. Ray ◽  
O. P. Niraula

The conventional density functional theory (DFT) and dynamical mean field theory (DMFT) is used to study the structural, electronic and the Mott-Hubbard metal-insulator phase transition of the pristine and superstructures, La(1-x)SrxTiO3 (x = 0, 0.20, 0.80, 1). The electrical and thermal conductivities, Seebeck coefficient, Figure of merit are calculated using the BoltzTraP codes. The present study reveals that the direct band gap of 2.20 eV and indirect band gap ~2.0 eV at the Γ point in the Brillouin zone of SrTiO3 is upgraded to 3.423eV by using modified Beck-Johnson (mBJ) interaction potential. The metal-insulator transition (MIT) of LaTiO3 and the superlattice La(1-x)SrxTiO3 have been investigated by using conventional density functional theory (DFT) and dynamical mean field theory (DMFT). The Mott-Hubbard metal-insulator transitions for pristine LaTiO3 for a Coulombian parameter, U = 2.5 eV and the thermodynamic parameter β = 6 (eV)-1 are consistent with the experimental results. A typical set of these correlation parameters for MIT La0.20Sr0.80TiO3 and La0.80Sr0.20TiO3 systems are found to be U = 3.5 eV and β = 10(eV)-1 and U = 3.2 eV and β = 10 (eV)-1 respectively. The characteristic sharp quasi-particle peak for a sample of La0.80Sr0.20TiO3 superlattice systems is obtained correlation parameter U = 3.0 eV and β = 6(eV)-1. A thermoelectric phase transition is observed for Seebeck Coefficient at temperature 300 K at near chemical potential, μ = 1eV of SrTiO3. The corresponding figure of merit (ZT) with chemical potential (μ) appears to be unity at near μ = 1eV.


Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Kenji Fukushima

AbstractResults from chiral effective models suggest the existence of the so-called QCD critical point. These model predictions are highly dependent on the model setup and there is no universal argument for its existence and location. I discuss why a first-order phase transition is generally favored in models at low temperature T and high chemical potential µ, which will explain why the model results are unreliable about the critical point. I propose a useful way to reinterpret the model results as a liquid-gas-type phase transition like that of nuclear matter. This picture provides us with a fairly model-independent description of the QCD critical point not relying on detailed phase structures.


2018 ◽  
Vol 175 ◽  
pp. 07032 ◽  
Author(s):  
Francesca Cuteri ◽  
Christopher Czaban ◽  
Owe Philipsen ◽  
Alessandro Sciarra

We report on the status of ongoing investigations aiming at locating the deconfinement critical point with standard Wilson fermions and Nf = 2 flavors towards the continuum limit (standard Columbia plot); locating the tricritical masses at imaginary chemical potential with unimproved staggered fermions at Nf = 2 (extended Columbia plot); identifying the order of the chiral phase transition at μ = 0 for Nf = 2 via extrapolation from non integer Nf (alternative Columbia plot).


Author(s):  
Jean Zinn-Justin

Universal quantities near the phase transition of O(N) symmetric vector models, can be determined, in the framework of the (f2 )2 field theory, and the corresponding renormalization group (RG), in the form of perturbative series. The O(N) symmetric field theories describe, in particular for N = 0, the universal properties of the statistics of long polymers, for N = 1, the liquid–vapour transition, for N = 2, superfluid helium transition, and so on. Universal quantities have been calculated within two different schemes, the Wilson-Fisher ϵ = 4 − d expansion, and perturbative expansion at fixed dimensions 2 and 3 (as suggested by Parisi). In both cases, the series are divergent, and the expansion parameters are not small. In fixed dimensions smaller than 4, the series are proven to be Borel summable. For the ϵ expansion, there are reasons that the property is equally true, but a proof is lacking. With this assumption, in both cases, although the series are divergent, they define unique functions. Since the expansion parameters are not small, summation methods are then required to determine these functions. A specific summation method, based on a parametric Borel transformation and mapping, in which the knowledge of the large order behaviour has been incorporated, has been successfully applied to the series, and has led to a precise evaluation of critical exponents and other universal quantities.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Junchen Rong ◽  
Ning Su

Abstract We develop the numerical bootstrap technique to study the 2 + 1 dimensional $$ \mathcal{N} $$ N = 1 superconformal field theories (SCFTs). When applied to the minimal $$ \mathcal{N} $$ N = 1 SCFT, it allows us to determine its critical exponents to high precision. This model was argued in [1] to describe a quantum critical point (QCP) at the boundary of a 3 + 1D topological superconductor. More interestingly, this QCP can be reached by tuning a single parameter, where supersymmetry (SUSY) is realized as an emergent symmetry. We show that the emergent SUSY condition also plays an essential role in bootstrapping this SCFT. But performing a “two-sided” Padé re-summation of the large N expansion series, we calculate the critical exponents for Gross-Neveu-Yukawa models at N =4 and N =8.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450031
Author(s):  
Tran Huu Phat ◽  
Nguyen Van Thu

Starting from an effective model of asymmetric nuclear matter we show that at finite temperature T and baryon chemical potential μB there exists a topological phase transition from state of non-Fermi liquid to that of Fermi liquid which is protected by winding numbers. At low μB the transition is first-order, then extends to a second-order phase transition at larger μB through a tri-critical point. The isospin dependences of the tri-critical point and the phase diagram in the (T, μB)-plane are established. The distinction between this type of phase transition and the similar phenomenon caused by the Silver Blaze property (SBP) at T = 0 is confirmed for isospin varying from 0 to 1. We reveal that the topological phase transition could emerge in a large class of nuclear theories.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


Sign in / Sign up

Export Citation Format

Share Document