scholarly journals Distinguishing magnetically and electrically charged Reissner–Nordström black holes by magnetized particle motion

2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Nozima Juraeva ◽  
Javlon Rayimbaev ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
Satimbay Palvanov

AbstractIn the present paper, we investigate the dynamics of magnetized particles around magnetically and electrically Reissner–Nordström (RN) black hole. The main idea of the work is to distinguish the effects of electric and magnetic charges of the RN black hole and spin of the rotating Kerr black hole through the dynamics of the magnetized particles. In this study, we have treated a magnetized neutron star as a magnetized test particle, in particular, the magnetar SGR (PSR) J1745-2900 orbiting around the supermassive black hole Sagittarius A* (SMBH SgrA*) with the magnetic interaction parameter $$b=0.716$$ b = 0.716 and the parameter $$\beta =10.2$$ β = 10.2 . The comparison of the effects of the magnetic and electric charges, and magnetic interaction parameters on the dynamics of the magnetar modeled as a magnetized particle near the SMBH Sgr A* has shown that the magnetic charge of the RN black hole can mimic the spin parameter of a rotating Kerr black hole up to $$a/M \simeq 0.82$$ a / M ≃ 0.82 . The external magnetic field can mimic the magnetic charge of the RN black hole up to $$Q_m/M=0.4465$$ Q m / M = 0.4465 . We have shown that the electric charge of the RN black hole can mimic the black hole magnetic charge up to $$Q_m/M=0.5482$$ Q m / M = 0.5482 and the magnetic field interaction with the magnetized particle acts against the increase of the mimicking value of the black hole spin parameter. The studies may be helpful to explain the observability of radio pulsars around the SMBH SgrA* system and taking it as a real astrophysical laboratory to get more precise constraints on the central black hole and dominated parameters of the alternate gravity. Finally, we have investigated the effects of magnetic and electric charge of the RN black hole in the center-of-mass energy of head-on collisions of magnetized particles with neutral, electrically charged, and magnetized particles. Both electric and magnetic charges of the RN black hole would lead to an increase in the center of the mass–energy of the collisions.

Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 76
Author(s):  
Ahmadjon Abdujabbarov ◽  
Javlon Rayimbaev ◽  
Farruh Atamurotov ◽  
Bobomurat Ahmedov

In the present work we explored the dynamics of magnetized particles around the compact object in γ-spacetime in the presence of an external asymptotically-uniform magnetic field. The analysis of the circular orbits of magnetized particles around the compact object in the spacetime of a γ-object immersed in the external magnetic field has shown that the area of stable circular orbits of magnetized particles increases with the increase of γ-parameter. We have also investigated the acceleration of the magnetized particles near the γ-object and shown that the center-of-mass energy of colliding magnetized particles increases with the increase of γ-parameter. Finally, we have applied the obtained results to the astrophysical scenario and shown that the values of γ-parameter in the range of γ∈(0.5,1) can mimic the spin of Kerr black hole up to a≃0.85, while the magnetic interaction can mimic the γ-parameter at γ∈(0.8,1) and spin of a Kerr black hole up to a≃0.3.


Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 44 ◽  
Author(s):  
Kamoliddin Haydarov ◽  
Ahmadjon Abdujabbarov ◽  
Javlon Rayimbaev ◽  
Bobomurat Ahmedov

Magnetized particle motion around black holes in conformal gravity immersed in asymptotically uniform magnetic field has been studied. We have also analyzed the behavior of magnetic fields near the horizon of the black hole in conformal gravity and shown that with the increase of conformal parameters L and N the value of angular component of magnetic field at the stellar surface decreases. The maximum value of the effective potential corresponding to circular motion of the magnetized particle increases with the increase of conformal parameters. It is shown that in all cases of neutral, charged and magnetized particle collisions in the black hole environment the center-of-mass energy decreases with the increase of conformal parameters L and N. In the case of the magnetized and negatively charged particle collisions, the innermost collision point with the maximum center-of-mass energy comes closer to the central object due to the effects of the parameters of the conformal gravity. We have applied the results to the real astrophysical scenario when a pulsar treated as a magnetized particle is orbiting the super massive black hole (SMBH) Sgr A* in the center of our galaxy in order to obtain the estimation of magnetized compact object’s orbital parameter. The possible detection of pulsar in Sgr A* close environment can provide constraints on black hole parameters. Here we have shown that there is degeneracy between spin of SMBH and ambient magnetic field and consequently the interaction of magnetic field ∼ 10 2 Gauss with magnetic moment of magnetized neutron star can in principle mimic spin of Kerr black holes up to 0.6 .


Author(s):  
Serguei S Komissarov

Abstract Recently, it was claimed by King & Pringle that accretion of electric charge by a black hole rotating in an aligned external magnetic field results in a “dead” vacuum magnetosphere, where the electric field is totally screened, no vacuum breakdown is possible, and the Blandford-Znajek mechanism cannot operate. Here we study in details the properties of the Wald solution for electrically charged black holes discussed in their paper. Our results show that the claim is erroneous as in the solution with the critical charge q0 = 2aB0 there exists a drop of electrostatic potential along all magnetic field lines except the one coinciding with the symmetry axis. It is also found that while uncharged rotating black holes expel external vacuum magnetic field from their event horizon (the Meissner effect), electric charging of black holes pulls the magnetic field lines back on it, resembling what has been observed in some previous force-free, RMHD and PIC simulations of black hole magnetospheres. This suggests that accretion of electric charge may indeed be a feature of the black hole electrodynamics. However, our analysis shows that the value q0 of the BH charge given by Wald is likely to be only an upper limit, and that the actual value depends of the details of the magnetospheric physics.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 43
Author(s):  
Mohsen Fathi ◽  
Marco Olivares ◽  
José R. Villanueva

In this paper, we explore the photon region and the shadow of the rotating counterpart of a static charged Weyl black hole, which has been previously discussed according to null and time-like geodesics. The rotating black hole shows strong sensitivity to the electric charge and the spin parameter, and its shadow changes from being oblate to being sharp by increasing in the spin parameter. Comparing the calculated vertical angular diameter of the shadow with that of M87*, we found that the latter may possess about 1036 protons as its source of electric charge, if it is a rotating charged Weyl black hole. A complete derivation of the ergosphere and the static limit is also presented.


1991 ◽  
Vol 06 (18) ◽  
pp. 1631-1642 ◽  
Author(s):  
SIDNEY COLEMAN ◽  
JOHN PRESKILL ◽  
FRANK WILCZEK

We show that quantum hair can alter the relation between the temperature and the mass of a black hole. A ZN electric charge on a black hole generates an electric field that is non-perturbative in ħ. A ZN magnetic charge on a black hole can be described classically, and can support a stable remnant. For global quantum hair, in contrast to gauge hair, we find no dynamical effects.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


Author(s):  
Gulmina Zaman Babar ◽  
Abdullah Zaman Babar ◽  
Farruh Atamurotov

Abstract We have studied the null geodesics in the background of the Kerr–Newman black hole veiled by a plasma medium using the Hamilton–Jacobi method. The influence of black hole’s charge and plasma parameters on the effective potential and the generic photon orbits has been investigated. Furthermore, our discussion embodies the effects of black hole’s charge, plasma and the inclination angle on the shadow cast by the gravity with and without the spin parameter. We examined the energy released from the black hole as a result of the thermal radiations, which exclusively depends on the size of the shadow. The angle of deflection of the massless particles is also explored considering a weak-field approximation. We present our results in juxtaposition to the analogous black holes in General Relativity, particularly the Schwarzschild and Kerr black hole.


2009 ◽  
Vol 699 (1) ◽  
pp. 722-731 ◽  
Author(s):  
Ye-Fei Yuan ◽  
Xinwu Cao ◽  
Lei Huang ◽  
Zhi-Qiang Shen

2009 ◽  
Vol 18 (13) ◽  
pp. 2035-2045 ◽  
Author(s):  
ANTON BAUSHEV ◽  
PASCAL CHARDONNET

Though a black hole can theoretically possess a very big charge ([Formula: see text]), the charge of the real astrophysical black holes is usually considered to be negligible. This supposition is based on the fact that an astrophysical black hole is always surrounded by some plasma, which is a very good conductor. However, it disregards the fact that black holes usually have some angular momentum, which can be interpreted as their rotation of a sort. If in the plasma surrounding the hole there is some magnetic field, it leads to electric field creation and, consequently, charge separation. In this article we estimate the upper limit of the electric charge of stellar mass astrophysical black holes. We have considered a new black hole formation process and shown that the charge of a newborn black hole can be significant (~ 1013 C ). Though the obtained charge of an astrophysical black hole is big, the charge-to-mass ratio is small, [Formula: see text], and it is not enough to affect significantly either the gravitational field of the star or the dynamics of its collapse.


Sign in / Sign up

Export Citation Format

Share Document