scholarly journals The cosmic muon and detector simulation framework of the extreme energy events (EEE) experiment

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
M. Abbrescia ◽  
C. Avanzini ◽  
L. Baldini ◽  
R. Baldini Ferroli ◽  
G. Batignani ◽  
...  

AbstractThis paper describes the simulation framework of the extreme energy events (EEE) experiment. EEE is a network of cosmic muon trackers, each made of three multi-gap resistive plate chambers (MRPC), able to precisely measure the absolute muon crossing time and the muon integrated angular flux at the ground level. The response of a single MRPC and the combination of three chambers have been implemented in a GEANT4-based framework (GEMC) to study the telescope response. The detector geometry, as well as details about the surrounding materials and the location of the telescopes have been included in the simulations in order to realistically reproduce the experimental set-up of each telescope. A model based on the latest parametrization of the cosmic muon flux has been used to generate single muon events. After validating the framework by comparing simulations to selected EEE telescope data, it has been used to determine detector parameters not accessible by analysing experimental data only, such as detection efficiency, angular and spatial resolution.

2018 ◽  
Vol 170 ◽  
pp. 09005 ◽  
Author(s):  
M.-L. Gallin-Martel ◽  
L. Abbassi ◽  
A. Bes ◽  
G. Bosson ◽  
J. Collot ◽  
...  

The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l’hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused (~1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.


2008 ◽  
Vol 8 (5) ◽  
pp. 17939-17986 ◽  
Author(s):  
M. Schaap ◽  
A. Apituley ◽  
R. M. A. Timmermans ◽  
R. B. A. Koelemeijer ◽  
G. de Leeuw

Abstract. To acquire daily estimates of PM2.5 distributions based on satellite data one depends critically on an established relation between AOD and ground level PM2.5. In this study we aimed to experimentally establish the AOD-PM2.5 relationship for the Netherlands. For that purpose an experiment was set-up at the AERONET site Cabauw. The average PM2.5 concentration during this ten month study was 18 μg/m3, which confirms that the Netherlands are characterised by a high PM burden. A first inspection of the AERONET level 1.5 (L1.5) AOD and PM2.5 data at Cabauw showed a low correlation between the two properties. However, after screening for cloud contamination in the AERONET L1.5 data, the correlation improved substantially. When also constraining the dataset to data points acquired around noon, the correlation between AOD and PM2.5 amounted to R2=0.6 for situations with fair weather. This indicates that AOD data contain information about the temporal evolution of PM2.5. We had used LIDAR observations to detect residual cloud contamination in the AERONET L1.5 data. Comparison of our cloud-screed L1.5 with AERONET L2 data that became available near the end of the study showed favorable agreement. The final relation found for Cabauw is PM2.5=124.5*AOD–0.34 (with PM2.5 in μg/m3) and is valid for fair weather conditions. The relationship determined between MODIS AOD and ground level PM2.5 at Cabauw is very similar to that based on the much larger dataset from the sun photometer data, after correcting for a systematic overestimation of the MODIS data of 0.05. We applied the relationship to a MODIS composite map to assess the PM2.5 distribution over the Netherlands. Spatial dependent systematic errors in the MODIS AOD, probably related to variability in surface reflectance, hamper a meaningful analysis of the spatial distribution of PM2.5 using AOD data at the scale of the Netherlands.


2008 ◽  
Vol 23 (02) ◽  
pp. 259-265
Author(s):  
A. GERANIOS ◽  
E. FOKITIS ◽  
S. MALTEZOS ◽  
K. PATRINOS ◽  
H. ROZAKI-MAVROULI

The efficiency of a pixel detector using optical UV filters is determined in this work. Based on the Auger fluorescence detector geometry, we have calculated the overall efficiency of the pixel detector using an appropriate method that takes into account the particular spectral functions and the dependence on the angle of incidence of the optical filter used. Assuming extensive air shower (EAS) events developed with various inclinations generated by AIRES code, we calculated the number of electrons and positrons produced during the development of the EAS's. The detection efficiency of the pixel detector is taken into account in estimating the recorded signal (number of photoelectrons) for two sets of EAS simulations, corresponding to protons and iron nuclei, as primary particles.


1976 ◽  
Vol 66 (1) ◽  
pp. 5-15 ◽  
Author(s):  
M. T. Gillies ◽  
T. J. Wilkes

AbstractMosquitoes flying at low levels over open farmland were sampled by means of electrical suction traps. These were set up at nine levels from ground level up to 6 m. From the vertical profiles obtained it was possible to recognise three patterns of behaviour: (1) a low-flying group with relatively very high densities below 1 m, comprising Mansonia (Man-sonioides) spp., Aedes spp. and some species of Anopheles; (2) an intermediate group with densities rather evenly distributed at the lower levels but declining above 2–4 m, comprising A. funestus Giles, A. gambiae Giles and Culex neavei Theo.; (3) a high-flying group with catches at 6 m greater, or much greater, than at 1 m, composed of C. antennatus (Becker), C. thalassius Theo. and C. poicilipes (Theo.). For all species, catches after 23.00 h showed an increase in the proportion of mosquitoes taken in traps at the lower levels, this being most marked at ground level and 0·5 m. No influence of either moonlight or wind speed could be detected to account for this. Biting catches on human baits showed a generally similar pattern to suction-trap catches, although differences between baits at 1-m intervals at the higher levels were less than with unbaited traps.


1993 ◽  
Vol 302 ◽  
Author(s):  
C. Manfredotti ◽  
F. Fizzotti ◽  
C. Ongaro ◽  
E. Vittone ◽  
U. Nastasi

ABSTRACTRecently, we reported a simulation of spectroscopic performances of CdTe detectors by a Monte Carlo program ‘ISIDE’. The program was demonstrated to be extremely useful both for an exact simulation of the spectral response of CdTe to γy-rays and for a detailed understanding of the effect of physical and electronic parameters on the experimental performances. In the present work, the attention is focused on the various aspects of CdTe response to 57Co γ-rays, in an energy interval which is extremely interesting for practical applications of CdTe spectroscopy. Spectra are presented for different experimental conditions, particularly as far as electronics set up is concerned, in correlation with the relevant rise time distributions and with spatial distribution of interaction points in the detector. It is proved that in order to account for the rise times distributions as compared with the experimental ones, one must assume the presence of a dead region on the front of the detector. Moreover, a clear indication of what is needed in order to reach the best energy resolution in realistic conditions is given.


2016 ◽  
Vol 44 ◽  
pp. 1660215
Author(s):  
Z. Idiri ◽  
F. Redjem ◽  
N. Beloudah

An experimental PGNAA set-up using a 1 Ci Am–Be source has been developed and used for analysis of bulk sewage sludge samples issued from a wastewater treatment plant situated in an industrial area of Algiers. The sample dimensions were optimized using thermal neutron flux calculations carried out with the MCNP5 Monte Carlo Code. A methodology is then proposed to perform quantitative analysis using the absolute method. For this, average thermal neutron flux inside the sludge samples is deduced using average thermal neutron flux in reference water samples and thermal flux measurements with the aid of a 3He neutron detector. The average absolute gamma detection efficiency is determined using the prompt gammas emitted by chlorine dissolved in a water sample. The gamma detection efficiency is normalized for sludge samples using gamma attenuation factors calculated with the MCNP5 code for water and sludge. Wet and dehydrated sludge samples were analyzed. Nutritive elements (Ca, N, P, K) and heavy metals elements like Cr and Mn were determined. For some elements, the PGNAA values were compared to those obtained using Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma (ICP) methods. Good agreement is observed between the different values. Heavy element concentrations are very high compared to normal values; this is related to the fact that the wastewater treatment plant is treating not only domestic but also industrial wastewater that is probably rejected by industries without removal of pollutant elements. The detection limits for almost all elements of interest are sufficiently low for the method to be well suited for such analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
B. Mitrica ◽  
D. Stanca ◽  
M. Petcu ◽  
I. M. Brancus ◽  
R. Margineanu ◽  
...  

Precise measurements of the muon flux are important for different practical applications, both in environmental studies and for the estimation of the water equivalent depths of underground sites. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground. Its first configuration, not used in the present, has been composed of two 1 m2scintillator plates, each viewed by wave length shifters and read out by two Photomultiplier Tubes (PMTs). A more recent configuration, consists of two 1 m2detection layers, each one including four 1 · 0,25 m2large scintillator plates. The light output in each plate is collected by twelve optical fibers and then read out by one PMT. Comparative results were obtained with both configurations.


2016 ◽  
Vol 63 (3) ◽  
pp. 1874-1881
Author(s):  
David Krapohl ◽  
Armin Schubel ◽  
Erik Frojdh ◽  
Goran Thungstrom ◽  
Christer Frojdh

Sign in / Sign up

Export Citation Format

Share Document