scholarly journals Neutrino trapping in extremely compact Tolman VII spacetimes

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Zdeněk Stuchlík ◽  
Jan Hladík ◽  
Jaroslav Vrba ◽  
Camilo Posada

AbstractExtremely compact objects trap gravitational waves or neutrinos, assumed to move along null geodesics in the trapping regions. The trapping of neutrinos was extensively studied for spherically symmetric extremely compact objects constructed under the simplest approximation of the uniform energy density distribution, with radius located under the photosphere of the external spacetime; in addition, uniform emissivity distribution of neutrinos was assumed in these studies. Here we extend the studies of the neutrino trapping for the case of the extremely compact Tolman VII objects representing the simplest generalization of the internal Schwarzschild solution with uniform distribution of the energy density, and the correspondingly related distribution of the neutrino emissivity that is thus again proportional to the energy density; radius of such extremely compact objects can overcome the photosphere of the external Schwarzschild spacetime. In dependence on the parameters of the Tolman VII spacetimes, we determine the “local” and “global” coefficients of efficiency of the trapping and demonstrate that the role of the trapping is significantly stronger than in the internal Schwarzschild spacetimes. Our results indicate possible influence of the neutrino trapping in cooling of neutron stars.

1988 ◽  
Vol 31 (10) ◽  
pp. 966-967
Author(s):  
V. I. Andreev ◽  
A. P. Palivoda ◽  
S. P. Fetisov ◽  
N. V. Shalomeeva ◽  
V. A. Yakovlev

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Harold White ◽  
Jerry Vera ◽  
Arum Han ◽  
Alexander R. Bruccoleri ◽  
Jonathan MacArthur

AbstractWhile conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1 $$\upmu $$ μ m diameter sphere centrally located in a 4 $$\upmu $$ μ m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Surajit Kalita ◽  
Banibrata Mukhopadhyay

Abstract A number of recent observations have suggested that the Einstein’s theory of general relativity may not be the ultimate theory of gravity. The f(R) gravity model with R being the scalar curvature turns out to be one of the best bet to surpass the general relativity which explains a number of phenomena where Einstein’s theory of gravity fails. In the f(R) gravity, behaviour of the spacetime is modified as compared to that of given by the Einstein’s theory of general relativity. This theory has already been explored for understanding various compact objects such as neutron stars, white dwarfs etc. and also describing evolution of the universe. Although researchers have already found the vacuum spacetime solutions for the f(R) gravity, yet there is a caveat that the metric does have some diverging terms and hence these solutions are not asymptotically flat. We show that it is possible to have asymptotically flat spherically symmetric vacuum solution for the f(R) gravity, which is different from the Schwarzschild solution. We use this solution for explaining various bound orbits around the black hole and eventually, as an immediate application, in the spherical accretion flow around it.


2019 ◽  
Vol 488 (2) ◽  
pp. 2825-2835 ◽  
Author(s):  
Giacomo Fragione ◽  
Nathan W C Leigh ◽  
Rosalba Perna

ABSTRACT Nuclear star clusters that surround supermassive black holes (SMBHs) in galactic nuclei are thought to contain large numbers of black holes (BHs) and neutron stars (NSs), a fraction of which form binaries and could merge by Kozai–Lidov oscillations (KL). Triple compact objects are likely to be present, given what is known about the multiplicity of massive stars, whose life ends either as an NS or a BH. In this paper, we present a new possible scenario for merging BHs and NSs in galactic nuclei. We study the evolution of a triple black hole (BH) or neutron star (NS) system orbiting an SMBH in a galactic nucleus by means of direct high-precision N-body simulations, including post-Newtonian terms. We find that the four-body dynamical interactions can increase the KL angle window for mergers compared to the binary case and make BH and NS binaries merge on shorter time-scales. We show that the merger fraction can be up to ∼5–8 times higher for triples than for binaries. Therefore, even if the triple fraction is only ∼10–$20\rm{\,per\,cent}$ of the binary fraction, they could contribute to the merger events observed by LIGO/VIRGO in comparable numbers.


2020 ◽  
Vol 33 (5) ◽  
pp. 718-728
Author(s):  
R. Latter ◽  
L. J. Brown ◽  
K. M. Rae ◽  
M. E. Rollo ◽  
T. L. Schumacher

2019 ◽  
Vol 28 (02) ◽  
pp. 1950033 ◽  
Author(s):  
M. Sharif ◽  
Arfa Waseem

This paper analyzes the effects of charge on the nature of relativistic compact star candidates with anisotropic distribution in the framework of [Formula: see text] gravity. For this purpose, we consider Krori–Barua solutions and obtain the values of unknown constants as well as charge using observational data of Her X-1, 4U1820-30 and SAX J 1808.4-3658 star models. For three viable [Formula: see text] models, we investigate the behavior of energy density, transverse as well as radial pressures in the interior geometry of these stars. The validity of energy conditions, effect of anisotropic factor and stability of these stellar models are also examined. We conclude that the effect of charge leads to more stable structures of relativistic compact objects.


Sign in / Sign up

Export Citation Format

Share Document