scholarly journals Tidal effects in 4D Einstein–Gauss–Bonnet black hole spacetime

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Jing Li ◽  
Songbai Chen ◽  
Jiliang Jing

AbstractWe have investigated tidal forces and geodesic deviation motion in the 4D-Einstein–Gauss–Bonnet spacetime. Our results show that tidal force and geodesic deviation motion depend sharply on the sign of Gauss–Bonnet coupling constant. Comparing with Schwarzschild spacetime, the strength of tidal force becomes stronger for the negative Gauss–Bonnet coupling constant, but is weaker for the positive one. Moreover, tidal force behaves like those in the Schwarzschild spacetime as the coupling constant is negative, and like those in Reissner–Nordström black hole as the constant is positive. We also present the change of geodesic deviation vector with Gauss–Bonnet coupling constant under two kinds of initial conditions.

2020 ◽  
Vol 29 (11) ◽  
pp. 2041014
Author(s):  
Haroldo C. D. Lima ◽  
Luís C. B. Crispino

Tidal forces produced by black holes are an important result of General Relativity related to the spacetime curvature tensor. Among the astrophysical implications of tidal forces, the tidal disruption events stand out. We analyze the tidal forces in the spacetime of an electrically charged Hayward regular black hole, obtaining the components of the tidal tensor and the geodesic deviation equation. We find that the radial and angular tidal forces may vanish and change sign unlike in the Schwarzschild spacetime. We note that tidal forces are finite at the origin of the radial coordinate in this regular black hole spacetime. We obtain the geodesic deviation vector for a body constituted of dust infalling towards the black hole with two different initial conditions.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
V. P. Vandeev ◽  
A. N. Semenova

AbstractThe article considers tidal forces in the vicinity of the Kottler black hole. We find a solution of the geodesic deviation equation for radially falling bodies, which is determined by elliptic integrals. And also the asymptotic behavior of all spatial geodesic deviation vector components were found. We demonstrate that the radial component of the tidal force changes sign outside the single event horizon for any negative values of the cosmological constant, in contrast to the Schwarzschild black hole, where all the components of the tidal force are sign-constant. We also find the similarity between the Kottler black hole and the Reissner–Nordström black hole, because we indicate the value of the cosmological constant, which ensures the existence of two horizons of the black hole, between which the angular components of the tidal force change sign. It was possible to detect non-analytical behavior of geodesic deviation vector components in anti-de Sitter spacetime and to describe it locally.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450157 ◽  
Author(s):  
Rashmi Uniyal ◽  
Hemwati Nandan ◽  
K. D. Purohit

We study the time-like geodesics and geodesic deviation for a two-dimensional (2D) stringy black hole (BH) spacetime in Schwarzschild gauge. We have analyzed the properties of effective potential along with the structure of the possible orbits for test particles with different settings of BH parameters. The exactly solvable geodesic deviation equation is used to obtain corresponding deviation vector. The nature of deviation and tidal force is also examined in view of the behavior of corresponding deviation vector. The results are also compared with an another 2D stringy BH spacetime.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Srijit Bhattacharjee ◽  
Shailesh Kumar ◽  
Arpan Bhattacharyya

Abstract We study the displacement memory effect and its connection with the extended-BMS symmetries near the horizon of black holes. We show there is a permanent shift in the geodesic deviation vector relating two nearby timelike geodesics placed close to the horizon of black holes, upon the passage of gravitational waves. We also relate this memory effect with the asymptotic symmetries near the horizon of asymptotic black hole spacetimes. The shift of the relative position of the detectors is shown to be induced by a combination of BMS generators near the horizon. The displacement memory effect near the horizon possesses similarities to the same obtained in the far region.


Open Physics ◽  
2012 ◽  
Vol 10 (1) ◽  
Author(s):  
ChunYan Wang ◽  
YaJun Gao

AbstractWe calculated the quasinormalmodes ofmassive scalar field of a black hole in the deformed Hořava-Lifshitz gravity with coupling constant λ = 1, using the third-order WKB approximation. Our results show that when the scalar field mass increases, the oscillation frequency increases while the damping decreases. And we find that the imaginary parts are almost linearly related to the real parts, the behaviors are very similar to that in the Reissner-Nordström black hole spacetime. These information will help us understand more about the Hořava-Lifshitz gravity.


2020 ◽  
Vol 1690 ◽  
pp. 012181
Author(s):  
E L Andre ◽  
I M Potashov ◽  
Ju V Tchemarina ◽  
A N Tsirulev
Keyword(s):  

2003 ◽  
Vol 71 (10) ◽  
pp. 1037-1042 ◽  
Author(s):  
Ratna Koley ◽  
Supratik Pal ◽  
Sayan Kar

2014 ◽  
Vol 29 (21) ◽  
pp. 1450115
Author(s):  
Fahrettin Koyuncu ◽  
Orhan Dönmez

We have solved the General Relativistic Hydrodynamic (GRH) equations using the high resolution shock capturing scheme (HRSCS) to find out the dependency of the disk dynamics to the Mach number, adiabatic index, the black hole rotation parameter and the outer boundary of the computational domain around the non-rotating and rotating black holes. We inject the gas to computational domain at upstream and downstream regions at the same time with different initial conditions. It is found that variety of the mass accretion rates and shock cone structures strongly depend on Mach number and adiabatic index of the gas. The shock cones on the accretion disk are important physical mechanisms to trap existing oscillation modes, thereupon these trapped modes may generate strong X-rays observed by different X-ray satellites. Besides, our numerical approach also show that the shock cones produces the flip–flop oscillation around the black holes. The flip–flop instabilities which are monitored in our simulations may explain the erratic spin behavior of the compact objects (the black holes and neutron stars) seen from observed data.


Sign in / Sign up

Export Citation Format

Share Document