scholarly journals Three-dimensional exotic Newtonian supergravity theory with cosmological constant

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Patrick Concha ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez

AbstractWe present a supersymmetric extension of the exotic Newtonian Chern–Simons gravity theory in three spacetime dimensions. The underlying new non-relativistic superalgebra is obtained by expanding the $${\mathcal {N}}=2$$ N = 2 AdS superalgebra and can be written as two copies of the enhanced Nappi–Witten algebra, one of which is augmented by supersymmetry. We show that the exotic Newtonian superalgebra allows to introduce a cosmological constant to the extended Newtonian supergravity. Interestingly, the obtained supergravity action contains the extended Newton–Hooke supergravity as a sub-case.

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Ricardo Caroca ◽  
Patrick Concha ◽  
Diego Peñafiel ◽  
Evelyn Rodríguez

AbstractIn this work we present a gauge-invariant three-dimensional teleparallel supergravity theory using the Chern-Simons formalism. The present construction is based on a supersymmetric extension of a particular deformation of the Poincaré algebra. At the bosonic level the theory describes a non-Riemannian geometry with a non-vanishing torsion. In presence of supersymmetry, the teleparallel supergravity theory is characterized by a non-vanishing super-torsion in which the cosmological constant can be seen as a source for the torsion. We show that the teleparallel supergravity theory presented here reproduces the Poincaré supergravity in the vanishing cosmological limit. The extension of our results to $${\mathcal {N}}=p+q$$ N = p + q supersymmetries is also explored.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Patrick Concha ◽  
Marcelo Ipinza ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez

Abstract In this work we present an alternative method to construct diverse non-relativistic Chern-Simons supergravity theories in three spacetime dimensions. To this end, we apply the Lie algebra expansion method based on semigroups to a supersymmetric extension of the Nappi-Witten algebra. Two different families of non-relativistic superalgebras are obtained, corresponding to generalizations of the extended Bargmann superalgebra and extended Newton-Hooke superalgebra, respectively. The expansion method considered here allows to obtain known and new non-relativistic supergravity models in a systematic way. In particular, it immediately provides an invariant tensor for the expanded superalgebra, which is essential to construct the corresponding Chern-Simons supergravity action. We show that the extended Bargmann supergravity and its Maxwellian generalization appear as particular subcases of a generalized extended Bargmann supergravity theory. In addition, we demonstrate that the generalized extended Bargmann and generalized extended Newton-Hooke supergravity families are related through a contraction process.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Patrick Concha ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez

AbstractIn this paper, we present two novel non-relativistic superalgebras which correspond to supersymmetric extensions of the enlarged extended Bargmann algebra. The three-dimensional non-relativistic Chern–Simons supergravity actions invariant under the aforementioned superalgebras are constructed. The new non-relativistic superalgebras allow to accommodate a cosmological constant in a non-relativistic supergravity theory. Interestingly, we show that one of the non-relativistic supergravity theories presented here leads to the recently introduced Maxwellian exotic Bargmann supergravity when the flat limit $$\ell \rightarrow \infty $$ ℓ → ∞ is considered. Besides, we show that both descriptions can be written in terms of a supersymmetric extension of the Nappi–Witten algebra or the extended Newton–Hooke superalgebra.


1990 ◽  
Vol 05 (12) ◽  
pp. 935-941 ◽  
Author(s):  
K. KOEHLER ◽  
F. MANSOURI ◽  
CENALO VAZ ◽  
L. WITTEN

We construct a de Sitter supergravity theory in 2 + 1 dimensions as the Chern-Simons gauge theory of the supergroup OSp (1|2; C). The resulting action is a consistent classical supergravity theory with a positive cosmological constant. As in other three dimensional Chern-Simons theories, diffeomorphisms are shown to be equivalent to gauge transformations of OSp (1|2; C) on shell. Consistency of the corresponding classical theory is briefly discussed.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Patrick Concha ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez ◽  
Gustavo Rubio

Abstract In the present work we find novel Newtonian gravity models in three space-time dimensions. We first present a Maxwellian version of the extended Newtonian gravity, which is obtained as the non-relativistic limit of a particular U(1)-enlargement of an enhanced Maxwell Chern-Simons gravity. We show that the extended Newtonian gravity appears as a particular sub-case. Then, the introduction of a cosmological constant to the Maxwellian extended Newtonian theory is also explored. To this purpose, we consider the non-relativistic limit of an enlarged symmetry. An alternative method to obtain our results is presented by applying the semigroup expansion method to the enhanced Nappi-Witten algebra. The advantages of considering the Lie algebra expansion procedure is also discussed.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Nikolay Bobev ◽  
Anthony M. Charles ◽  
Kiril Hristov ◽  
Valentin Reys

Abstract We use conformal supergravity techniques to study four-derivative corrections in four-dimensional gauged supergravity. We show that the four-derivative Lagrangian for the propagating degrees of freedom of the $$ \mathcal{N} $$ N = 2 gravity multiplet is determined by two real dimensionless constants. We demonstrate that all solutions of the two-derivative equations of motion in the supergravity theory also solve the four-derivative equations of motion. These results are then applied to explicitly calculate the regularized on-shell action for any asymptotically locally AdS4 solution of the two-derivative equations of motion. The four-derivative terms in the supergravity Lagrangian modify the entropy and other thermodynamic observables for the black hole solutions of the theory. We calculate these corrections explicitly and demonstrate that the quantum statistical relation holds for general stationary black holes in the presence of the four-derivative corrections. Employing an embedding of this supergravity model in M-theory we show how to use supersymmetric localization results in the holographically dual three-dimensional SCFT to determine the unknown coefficients in the four-derivative supergravity action. This in turn leads to new detailed results for the first subleading $$ {N}^{\frac{1}{2}} $$ N 1 2 correction to the large N partition function of a class of three-dimensional SCFTs on compact Euclidean manifolds. In addition, we calculate explicitly the first subleading correction to the Bekenstein-Hawking entropy of asymptotically AdS4 black holes in M-theory. We also discuss how to add matter multiplets to the supergravity theory in the presence of four-derivative terms and to generalize some of these results to six- and higher-derivative supergravity.


2010 ◽  
Vol 25 (09) ◽  
pp. 1819-1851 ◽  
Author(s):  
CHANGHYUN AHN ◽  
KYUNGSUNG WOO

We consider the most general SU(3) singlet space of gauged [Formula: see text] supergravity in four dimensions. The SU(3)-invariant six scalar fields in the theory can be viewed in terms of six real four-forms. By exponentiating these four-forms, we eventually obtain the new scalar potential. For the two extreme limits, we reproduce the previous results found by Warner in 1983. In particular, for the [Formula: see text] critical point, we find the constraint surface parametrized by three scalar fields on which the cosmological constant has the same value. We obtain the BPS domain-wall solutions for restricted scalar submanifold. We also describe the three-dimensional mass-deformed superconformal Chern–Simons matter theory dual to the above supersymmetric flows in four dimensions.


1996 ◽  
Vol 11 (03) ◽  
pp. 227-245 ◽  
Author(s):  
A.D.Y. CHENG ◽  
P.V. MONIZ

The theory of N=2 supergravity is applied to Bianchi class A models. Their canonical formulation is addressed for two cases: when the O(2) internal symmetry is (a) global or (b) local. A cosmological constant and mass-like term for the gravitinos are required in the latter but are absent in the former. For the case of global O(2) symmetry, it is shown that the presence of a Maxwell field in the supersymmetry constraints is sufficient to imply a non-conservation of the fermionic number. This effect corresponds to a mixing between different Lorentz invariant fermionic sectors in the wave function of the universe. It is similar to what a cosmological constant term would have caused but considerably different from what occurs in FRW and Bianchi models in N=1 supergravity with scalar fields and fermionic partners. The nonconservation effect is interpreted from the point of view of N=2 supergravity theory. For case (b), we obtain the more general solution of the gauge constraint. Possible quantum physical states are then discussed regarding previous works where Ashtekar variables have been used. These states can be obtained from an N=2 supersymmetric Chern-Simons functional. Some comments concerning the physical validity of the Chern-Simons solution and its transformation into metric representation variables are included.


2021 ◽  
pp. 136735
Author(s):  
Patrick Concha ◽  
Diego Peñafiel ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez

Sign in / Sign up

Export Citation Format

Share Document