scholarly journals Three-dimensional Maxwellian Carroll gravity theory and the cosmological constant

2021 ◽  
pp. 136735
Author(s):  
Patrick Concha ◽  
Diego Peñafiel ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez
2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Patrick Concha ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez

AbstractWe present a supersymmetric extension of the exotic Newtonian Chern–Simons gravity theory in three spacetime dimensions. The underlying new non-relativistic superalgebra is obtained by expanding the $${\mathcal {N}}=2$$ N = 2 AdS superalgebra and can be written as two copies of the enhanced Nappi–Witten algebra, one of which is augmented by supersymmetry. We show that the exotic Newtonian superalgebra allows to introduce a cosmological constant to the extended Newtonian supergravity. Interestingly, the obtained supergravity action contains the extended Newton–Hooke supergravity as a sub-case.


2012 ◽  
Vol 27 (28) ◽  
pp. 1250164
Author(s):  
J. MANUEL GARCÍA-ISLAS

In the three-dimensional spin foam model of quantum gravity with a cosmological constant, there exists a set of observables associated with spin network graphs. A set of probabilities is calculated from these observables, and hence the associated Shannon entropy can be defined. We present the Shannon entropy associated with these observables and find some interesting bounded inequalities. The problem relates measurements, entropy and information theory in a simple way which we explain.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Patrick Concha ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez ◽  
Gustavo Rubio

Abstract In the present work we find novel Newtonian gravity models in three space-time dimensions. We first present a Maxwellian version of the extended Newtonian gravity, which is obtained as the non-relativistic limit of a particular U(1)-enlargement of an enhanced Maxwell Chern-Simons gravity. We show that the extended Newtonian gravity appears as a particular sub-case. Then, the introduction of a cosmological constant to the Maxwellian extended Newtonian theory is also explored. To this purpose, we consider the non-relativistic limit of an enlarged symmetry. An alternative method to obtain our results is presented by applying the semigroup expansion method to the enhanced Nappi-Witten algebra. The advantages of considering the Lie algebra expansion procedure is also discussed.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950122
Author(s):  
Meguru Komada

Causality is one of the most important properties to understand gravity theories. It gives us not only a method to confirm that the gravity theories are really consistent, but also gives implications about the properties which unknown fundamental physics should obey. We investigate the causality of three-dimensional (3D) gravity theories, which are considered to be important, by using the Shapiro time delay effect in the Shock wave geometry. One of such gravity theories is the Zwei-Dreibein Gravity (ZDG) theory, which is a consistent 3D gravity theory. In ZDG theory, the serious problems can be removed that have appeared in another important gravity theory called New Massive Gravity (NMG). We study whether the ZDG theory could preserve the causality without losing the above good properties and how the causality structure is related to the structure of the NMG theory.


2015 ◽  
Vol 30 (15) ◽  
pp. 1550080
Author(s):  
J. Berra-Montiel ◽  
J. E. Rosales-Quintero

We discuss the interplay between standard canonical analysis and canonical discretization in three-dimensional gravity with cosmological constant. By using the Hamiltonian analysis, we find that the continuum local symmetries of the theory are given by the on-shell space–time diffeomorphisms, which at the action level, correspond to the Kalb–Ramond transformations. At the time of discretization, although this symmetry is explicitly broken, we prove that the theory still preserves certain gauge freedom generated by a constant curvature relation in terms of holonomies and the Gauss's law in the lattice approach.


2019 ◽  
Vol 28 (15) ◽  
pp. 1950175 ◽  
Author(s):  
Mahamadou Daouda ◽  
J. C. Fabris ◽  
A. M. Oliveira ◽  
F. Smirnov ◽  
H. E. S. Velten

Extensions of the gravity theory in order to obtain traceless field equations have been widely considered in the literature. The leading example of such class of theories is the unimodular gravity, but there are other possibilities like the mimetic gravity and the Rastall gravity with a coupling parameter [Formula: see text]. The unimodular gravity proposal is a very interesting approach in order to address the cosmological constant problem. When coupled to matter, such theories may imply that the energy–momentum tensor is not divergence free anymore. In this paper, a unimodular type theory will be developed by evading the conservation [Formula: see text]. The cosmological consequences of the later, both at background as well as for scalar and tensor perturbations, are explored. Possible further extensions of this approach are discussed as well as its connection with the traditional unimodular gravity.


Universe ◽  
2018 ◽  
Vol 4 (10) ◽  
pp. 105 ◽  
Author(s):  
Pritha Bari ◽  
Kaushik Bhattacharya ◽  
Saikat Chakraborty

In this work, we present some cosmologically relevant solutions using the spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime in metric f ( R ) gravity where the form of the gravitational Lagrangian is given by 1 α e α R . In the low curvature limit this theory reduces to ordinary Einstein-Hilbert Lagrangian together with a cosmological constant term. Precisely because of this cosmological constant term this theory of gravity is able to support nonsingular bouncing solutions in both matter and vacuum background. Since for this theory of gravity f ′ and f ″ is always positive, this is free of both ghost instability and tachyonic instability. Moreover, because of the existence of the cosmological constant term, this gravity theory also admits a de-Sitter solution. Lastly we hint towards the possibility of a new type of cosmological solution that is possible only in higher derivative theories of gravity like this one.


Sign in / Sign up

Export Citation Format

Share Document