scholarly journals Thick braneworld model in nonmetricity formulation of general relativity and its stability

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Qi-Ming Fu ◽  
Li Zhao ◽  
Qun-Ying Xie

AbstractIn this paper, we study the thick brane system in the so-called f(Q) gravity, where the gravitational interaction was encoded by the nonmetricity Q like scalar curvature R in general relativity. With a special choice of $$f(Q)=Q-b Q^n$$ f ( Q ) = Q - b Q n , we find that the thick brane system can be solved analytically with the first-order formalism, where the complicated second-order differential equation is transformed to several first-order differential equations. Moreover, the stability of the thick brane system under tensor perturbation is also investigated. It is shown that the tachyonic states are absent and the graviton zero mode can be localized on the brane. Thus, the four-dimensional Newtonian potential can be recovered at low energy. Besides, the corrections of the massive graviton Kaluza–Klein modes to the Newtonian potential are also analyzed briefly.

2012 ◽  
Vol 2012 ◽  
pp. 1-26
Author(s):  
Ni Hua ◽  
Tian Li-Xin

This paper deals with a first-order differential equation with a polynomial nonlinear term. The integrability and existence of periodic solutions of the equation are obtained, and the stability of periodic solutions of the equation is derived.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1345
Author(s):  
Qun-Ying Xie ◽  
Qi-Ming Fu ◽  
Tao-Tao Sui ◽  
Li Zhao ◽  
Yi Zhong

In this paper, we investigate thick branes generated by a scalar field in mimetic gravity theory, which is inspired by considering the conformal symmetry under the conformal transformation of an auxiliary metric. By introducing two auxiliary super-potentials, we transform the second-order field equations of the system into a set of first-order equations. With this first-order formalism, several types of analytical thick brane solutions are obtained. Then, tensor and scalar perturbations are analyzed. We find that both kinds of perturbations are stable. The effective potentials for the tensor and scalar perturbations are dual to each other. The tensor zero mode can be localized on the brane while the scalar zero mode cannot. Thus, the four-dimensional Newtonian potential can be recovered on the brane.


2020 ◽  
Vol 1 (1) ◽  
pp. 31-40
Author(s):  
Sri Lestari Mahmud ◽  
Novianita Achmad ◽  
Hasan S. Panigoro

Limboto lake is one of assets of Province of Gorontalo that provides many benefits to the surrounding society. The main problem of Limboto lake is the silting of the lake due to sedimentation caused by forest erosion, household waste, water hyacinth, and fish farming which is not environmentally friendly. In this article, a mathematical approach is used to modeling the Limboto lake siltation by including the revitalization solution namely the lake dredging. Mathematical modeling begins by building and limiting assumptions, constructing variables and parameters in mathematical symbols, and forming them into a first order differential equation system deterministically. Furthermore, we study the dynamics of the model such as identifying the existence of equilibrium points and their stability conditions. We also give a numerical simulations to show the conditions based on the stability requirements in previous analytical results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2008 ◽  
Vol 73 (3) ◽  
pp. 271-282 ◽  
Author(s):  
Jelena Zvezdanovic ◽  
Dejan Markovic

The stability of chlorophylls toward UV irradiation was studied by Vis spectrophotometry in extracts containing mixtures of photosynthetic pigments in acetone and n-hexane. The chlorophylls underwent destruction (bleaching) obeying first-order kinetics. The bleaching was governed by three major factors: the energy input of the UV photons, the concentration of the chlorophylls and the polarity of the solvent, implying different molecular organizations of the chlorophylls in the two solvents.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550053 ◽  
Author(s):  
Amare Abebe

One of the exact solutions of f(R) theories of gravity in the presence of different forms of matter exactly mimics the ΛCDM solution of general relativity (GR) at the background level. In this work we study the evolution of scalar cosmological perturbations in the covariant and gauge-invariant formalism and show that although the background in such a model is indistinguishable from the standard ΛCDM cosmology, this degeneracy is broken at the level of first-order perturbations. This is done by predicting different rates of structure formation in ΛCDM and the f(R) model both in the complete and quasi-static regimes.


2000 ◽  
Vol 15 (28) ◽  
pp. 4477-4498 ◽  
Author(s):  
P. M. LLATAS ◽  
A. V. RAMALLO ◽  
J. M. SÁNCHEZ DE SANTOS

We analyze the world volume solitons of a D3-brane probe in the background of parallel (p, q) five-branes. The D3-brane is embedded along the directions transverse to the five-branes of the background. By using the S duality invariance of the D3-brane, we find a first-order differential equation whose solutions saturate an energy bound. The SO(3) invariant solutions of this equation are found analytically. They represent world volume solitons which can be interpreted as formed by parallel (-q, p) strings emanating from the D3-brane world volume. It is shown that these configurations are 1/4 supersymmetric and provide a world volume realization of the Hanany–Witten effect.


Sign in / Sign up

Export Citation Format

Share Document