scholarly journals Effect of anisotropy on the generalized Chaplygin gas scalar field and its interaction with other dark energy models

2017 ◽  
Vol 132 (4) ◽  
Author(s):  
V. Fayaz ◽  
H. Hossienkhani ◽  
A. Jafari
2011 ◽  
Vol 20 (03) ◽  
pp. 281-297 ◽  
Author(s):  
M. MALEKJANI ◽  
A. KHODAM-MOHAMMADI

In this work, we investigate the holographic dark energy model with a new infrared cutoff (new HDE model), proposed by Granda and Oliveros. Using this new definition for the infrared cutoff, we establish the correspondence between the new HDE model and the standard Chaplygin gas (SCG), generalized Chaplygin gas (GCG) and modified Chaplygin gas (MCG) scalar field models in a nonflat universe. The potential and dynamics for these scalar field models, which describe the accelerated expansion of the universe, are reconstructed. According to the evolutionary behavior of the new HDE model, we derive the same form of dynamics and potential for the different SCG, GCG and MCG models. We also calculate the squared sound speed of the new HDE model as well as the SCG, GCG and MCG models, and investigate the new HDE Chaplygin gas models from the viewpoint of linear perturbation theory. In addition, all results in the nonflat universe are discussed in the limiting case of the flat universe, i.e. k = 0.


2007 ◽  
Vol 04 (02) ◽  
pp. 313-323 ◽  
Author(s):  
MAREK SZYDLOWSKI ◽  
ALEKSANDRA KUREK

We characterize a class of simple FRW models filled by both dark energy and dark matter in notion of a single potential function of the scale factor a(t); t is the cosmological time. It represents the potential of a fictitious particle — Universe moving in 1-dimensional well V(a) which the positional variable mimics the evolution of the Universe. Then the class of all dark energy models (called a multiverse) can be regarded as a Banach space naturally equipped in the structure of the Sobolev metric. In this paper, we explore the notion of C1 metric introduced in the multiverse which measures distance between any two dark energy models. If we choose cold dark matter as a reference, then we can find how far apart are different models offering explanation of the present accelerating expansion phase of the Universe. We consider both models with dark energy (models with the generalized Chaplygin gas, models with variable coefficient equation of state [Formula: see text] parameterized by redshift z, models with phantom matter) as well as models based on some modification of Friedmann equation (Cardassian models, Dvali–Gabadadze–Porrati brane models). We argue that because observational data still favor the ΛCDM model, all reasonable dark energy models should belong to the nearby neighborhood of this model.


2011 ◽  
Vol 26 (10) ◽  
pp. 727-737 ◽  
Author(s):  
LEI WANG ◽  
YA-BO WU ◽  
LEI LI ◽  
YUAN GAO ◽  
JIAN GAO

In this paper, motivated by Ref. 31, we study the so-called new agegraphic Chaplygin gas model with viscosity. Concretely, we establish the correspondence between the interacting new agegraphic dark energy (NADE) and variable generalized Chaplygin gas (VGCG) models in non-flat universe on the basis of reviewing related contents for the NADE and VGCG models. Furthermore, we reconstruct the potential of the new agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. Finally, we generalize our study to the case of NADE with viscosity, which includes the case without viscosity (ν = 0) as a special case.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250046 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

In this paper, we investigate the statefinder, the deceleration and equation of state parameters when universe is composed of generalized holographic dark energy or generalized Ricci dark energy for Bianchi I universe model. These parameters are found for both interacting as well as noninteracting scenarios of generalized holographic or generalized Ricci dark energy with dark matter and generalized Chaplygin gas. We explore these parameters graphically for different situations. It is concluded that these models represent accelerated expansion of the universe.


2019 ◽  
Vol 2 (1) ◽  
pp. 98-102
Author(s):  
MUSTAFA SALTI ◽  
MURAT KORUNUR ◽  
KENAN SOGUT ◽  
OKTAY AYDOĞDU

2009 ◽  
Vol 18 (13) ◽  
pp. 2023-2034 ◽  
Author(s):  
A. SHEYKHI

We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in a nonflat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950171
Author(s):  
Abdulla Al Mamon ◽  
Pritikana Bhandari ◽  
Subenoy Chakraborty

In this work, we have made an attempt to investigate the dark energy possibility from the thermodynamical point of view. For this purpose, we have studied thermodynamic stability of three popular dark energy models in the framework of an expanding, homogeneous, isotropic and spatially flat FRW Universe filled with dark energy and cold dark matter. The models considered in this work are Chevallier–Polarski–Linder (CPL) model, Generalized Chaplygin Gas (GCG) model and Modified Chaplygin Gas (MCG) model. By considering the cosmic components (dark energy and cold dark matter) as perfect fluid, we have examined the constraints imposed on the total equation of state parameter ([Formula: see text]) of the dark fluid by thermodynamics and found that the phantom nature ([Formula: see text]) is not thermodynamically stable. Our investigation indicates that the dark fluid models (CPL, GCG and MCG) are thermodynamically stable under some restrictions of the parameters of each model.


2009 ◽  
Vol 24 (21) ◽  
pp. 1649-1657 ◽  
Author(s):  
CHIEN-WEN CHEN ◽  
JE-AN GU ◽  
PISIN CHEN

Recently we proposed a new approach to test dark energy models based on the observational data. In that work we focused particularly on quintessence models for demonstration and invoked a widely used parametrization of the dark energy equation of state. In this paper we take the more recent SN Ia , CMB and BAO data, invoke the same parametrization, and apply this method of consistency test to five dark energy models, including the ΛCDM model, the generalized Chaplygin gas, and three quintessence models: exponential, power-law and inverse-exponential potentials. We find that the exponential potential of quintessence is ruled out at the 95.4% confidence level, while the other four models are consistent with data. This consistency test can be efficiently performed since for all models it requires the constraint of only a single parameter space that by choice can be easily accessed.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 769
Author(s):  
Martiros Khurshudyan ◽  
Ratbay Myrzakulov

The goal of this paper is to study new cosmological models where the dark energy is a varying Chaplygin gas. This specific dark energy model with non-linear EoS had been often discussed in modern cosmology. Contrary to previous studies, we consider new forms of non-linear non-gravitational interaction between dark matter and assumed dark energy models. We applied the phase space analysis allowing understanding the late time behavior of the models. It allows demonstrating that considered non-gravitational interactions can solve the cosmological coincidence problem. On the other hand, we applied Bayesian Machine Learning technique to learn the constraints on the free parameters. In this way, we gained a better understanding of the models providing a hint which of them can be ruled out. Moreover, the learning based on the simulated expansion rate data shows that the models cannot solve the H0 tension problem.


Sign in / Sign up

Export Citation Format

Share Document