HIERARCHIES OF GENERALIZED KOLMOGOROV COMPLEXITIES AND NONENUMERABLE UNIVERSAL MEASURES COMPUTABLE IN THE LIMIT

2002 ◽  
Vol 13 (04) ◽  
pp. 587-612 ◽  
Author(s):  
JÜRGEN SCHMIDHUBER

The traditional theory of Kolmogorov complexity and algorithmic probability focuses on monotone Turing machines with one-way write-only output tape. This naturally leads to the universal enumerable Solomonoff-Levin measure. Here we introduce more general, nonenumerable but cumulatively enumerable measures (CEMs) derived from Turing machines with lexicographically nondecreasing output and random input, and even more general approximable measures and distributions computable in the limit. We obtain a natural hierarchy of generalizations of algorithmic probability and Kolmogorov complexity, suggesting that the "true" information content of some (possibly infinite) bitstring x is the size of the shortest nonhalting program that converges to x and nothing but x on a Turing machine that can edit its previous outputs. Among other things we show that there are objects computable in the limit yet more random than Chaitin's "number of wisdom" Omega, that any approximable measure of x is small for any x lacking a short description, that there is no universal approximable distribution, that there is a universal CEM, and that any nonenumerable CEM of x is small for any x lacking a short enumerating program. We briefly mention consequences for universes sampled from such priors.

2004 ◽  
Vol 11 (2) ◽  
pp. 75-98
Author(s):  
Carlos A. P. Campani ◽  
Paulo Blauth Menezes

This work is a survey about the definition of “random sequence”. We emphasize the definition of Martin-Löf and the definition based on incompressibility (Kolmogorov complexity). Kolmogorov complexity is a profound and sofisticated theory of information and randomness based on Turing machines. These two definitions solve all the problems of the other approaches, satisfying our intuitive concept of randomness, and both are mathematically correct. Furthermore, we show the Schnorr’s approach, that includes a requisite of effectiveness (computability) in his definition. We show the relations between all definitions in a critical way. Keywords: randomness, Kolmogorov complexity, Turing machine, computability, probability.


2000 ◽  
Vol 65 (3) ◽  
pp. 1193-1203 ◽  
Author(s):  
P.D. Welch

AbstractWe characterise explicitly the decidable predicates on integers of Infinite Time Turing machines, in terms of admissibility theory and the constructible hierarchy. We do this by pinning down ζ, the least ordinal not the length of any eventual output of an Infinite Time Turing machine (halting or otherwise); using this the Infinite Time Turing Degrees are considered, and it is shown how the jump operator coincides with the production of mastercodes for the constructible hierarchy; further that the natural ordinals associated with the jump operator satisfy a Spector criterion, and correspond to the Lζ-stables. It also implies that the machines devised are “Σ2 Complete” amongst all such other possible machines. It is shown that least upper bounds of an “eventual jump” hierarchy exist on an initial segment.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 66
Author(s):  
Songsong Dai

In this paper, we give a definition for fuzzy Kolmogorov complexity. In the classical setting, the Kolmogorov complexity of a single finite string is the length of the shortest program that produces this string. We define the fuzzy Kolmogorov complexity as the minimum classical description length of a finite-valued fuzzy language through a universal finite-valued fuzzy Turing machine that produces the desired fuzzy language. The classical Kolmogorov complexity is extended to the fuzzy domain retaining classical descriptions. We show that our definition is robust, that is to say, the complexity of a finite-valued fuzzy language does not depend on the underlying finite-valued fuzzy Turing machine.


Author(s):  
KATSUSHI INOUE ◽  
ITSUO SAKURAMOTO ◽  
MAKOTO SAKAMOTO ◽  
ITSUO TAKANAMI

This paper deals with two topics concerning two-dimensional automata operating in parallel. We first investigate a relationship between the accepting powers of two-dimensional alternating finite automata (2-AFAs) and nondeterministic bottom-up pyramid cellular acceptors (NUPCAs), and show that Ω ( diameter × log diameter ) time is necessary for NUPCAs to simulate 2-AFAs. We then investigate space complexity of two-dimensional alternating Turing machines (2-ATMs) operating in small space, and show that if L (n) is a two-dimensionally space-constructible function such that lim n → ∞ L (n)/ loglog n > 1 and L (n) ≤ log n, and L′ (n) is a function satisfying L′ (n) =o (L(n)), then there exists a set accepted by some strongly L (n) space-bounded two-dimensional deterministic Turing machine, but not accepted by any weakly L′ (n) space-bounded 2-ATM, and thus there exists a rich space hierarchy for weakly S (n) space-bounded 2-ATMs with loglog n ≤ S (n) ≤ log n.


Author(s):  
Abel Molina ◽  
John Watrous

Yao's 1995 publication ‘Quantum circuit complexity’ in Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science , pp. 352–361, proved that quantum Turing machines and quantum circuits are polynomially equivalent computational models: t ≥ n steps of a quantum Turing machine running on an input of length n can be simulated by a uniformly generated family of quantum circuits with size quadratic in t , and a polynomial-time uniformly generated family of quantum circuits can be simulated by a quantum Turing machine running in polynomial time. We revisit the simulation of quantum Turing machines with uniformly generated quantum circuits, which is the more challenging of the two simulation tasks, and present a variation on the simulation method employed by Yao together with an analysis of it. This analysis reveals that the simulation of quantum Turing machines can be performed by quantum circuits having depth linear in t , rather than quadratic depth, and can be extended to variants of quantum Turing machines, such as ones having multi-dimensional tapes. Our analysis is based on an extension of method described by Arright, Nesme and Werner in 2011 in Journal of Computer and System Sciences 77 , 372–378. ( doi:10.1016/j.jcss.2010.05.004 ), that allows for the localization of causal unitary evolutions.


Author(s):  
TOKIO OKAZAKI ◽  
KATSUSHI INOUE ◽  
AKIRA ITO ◽  
YUE WANG

This paper investigates closure property of the classes of sets accepted by space-bounded two-dimensional alternating Turing machines (2-atm's) and space-bounded two-dimensional alternating pushdown automata (2-apda's), and space-bounded two-dimensional alternating counter automata (2-aca's). Let L(m, n): N2 → N (N denotes the set of all positive integers) be a function with two variables m (= the number of rows of input tapes) and n (= the number of columns of input tapes). We show that (i) for any function f(m) = o( log m) (resp. f(m) = o( log m/ log log m)) and any monotonic nondecreasing function g(n) space-constructible by a two-dimensional Turing machine (2-Tm) (resp. two-dimensional pushdown automaton (2-pda)), the class of sets accepted by L(m,n) space-bounded 2-atm's (2-apda's) is not closed under row catenation, row + or projection, and (ii) for any function f(m) = o(m/ log ) (resp. for any function f(m) such that log f(m) = o( log m)) and any monotonic nondecreasing function g(n) space-constructible by a two-dimensional counter automaton (2-ca), the class of sets accepted by L(m, n) space-bounded 2-aca's is not closed under row catenation, row + or projection, where L(m, n) = f(m) + g(n) (resp. L(m, n) = f(m) × g(n)).


1972 ◽  
Vol 37 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Albert R. Meyer ◽  
Patrick C. Fischer

The complexity of a computable function can be measured by considering the time or space required to compute its values. Particular notions of time and space arising from variants of Turing machines have been investigated by R. W. Ritchie [14], Hartmanis and Stearns [8], and Arbib and Blum [1], among others. General properties of such complexity measures have been characterized axiomatically by Rabin [12], Blum [2], Young [16], [17], and McCreight and Meyer [10].In this paper the speed-up and super-speed-up theorems of Blum [2] are generalized to speed-up by arbitrary total effective operators. The significance of such theorems is that one cannot equate the complexity of a computable function with the running time of its fastest program, for the simple reason that there are computable functions which in a very strong sense have no fastest programs.Let φi be the ith partial recursive function of one variable in a standard Gödel numbering of partial recursive functions. A family Φ0, Φ1, … of functions of one variable is called a Blum measure on computation providing(1) domain (φi) = domain (Φi), and(2) the predicate [Φi(x) = m] is recursive in i, x and m.Typical interpretations of Φi(x) are the number of steps required by the ith Turing machine (in a standard enumeration of Turing machines) to converge on input x, the space or number of tape squares required by the ith Turing machine to converge on input x (with the convention that Φi(x) is undefined even if the machine fails to halt in a finite loop), and the length of the shortest derivation of the value of φi(x) from the ith set of recursive equations.


2001 ◽  
Vol 63 (3) ◽  
pp. 623-639 ◽  
Author(s):  
DEREK F. HOLT ◽  
SARAH REES

The paper is devoted to the study of groups whose word problem can be solved by a Turing machine which operates in real time. A recent result of the first author for word hyperbolic groups is extended to prove that under certain conditions the generalised Dehn algorithms of Cannon, Goodman and Shapiro, which clearly run in linear time, can be programmed on real-time Turing machines. It follows that word-hyperbolic groups, finitely generated nilpotent groups and geometrically finite hyperbolic groups all have real-time word problems.


2001 ◽  
Vol 11 (02n03) ◽  
pp. 353-361 ◽  
Author(s):  
STEFAN D. BRUDA ◽  
SELIM G. AKL

We assume the multitape real-time Turing machine as a formal model for parallel real-time computation. Then, we show that, for any positive integer k, there is at least one language Lk which is accepted by a k-tape real-Turing machine, but cannot be accepted by a (k - 1)-tape real-time Turing machine. It follows therefore that the languages accepted by real-time Turing machines form an infinite hierarchy with respect to the number of tapes used. Although this result was previously obtained elsewhere, our proof is considerably shorter, and explicitly builds the languages Lk. The ability of the real-time Turing machine to model practical real-time and/or parallel computations is open to debate. Nevertheless, our result shows how a complexity theory based on a formal model can draw interesting results that are of more general nature than those derived from examples. Thus, we hope to offer a motivation for looking into realistic parallel real-time models of computation.


2008 ◽  
Vol 22 (12) ◽  
pp. 1203-1210 ◽  
Author(s):  
CAROLINE ROGERS ◽  
VLATKO VEDRAL

The Kolmogorov complexity of a physical state is the minimal physical resources required to reproduce that state. We define a second quantized quantum Turing machine and use it to define second quantized Kolmogorov complexity. There are two advantages to our approach — our measure of the second quantized Kolmogorov complexity is closer to physical reality and unlike other quantum Kolmogorov complexities, it is continuous. We give examples where the second quantized and quantum Kolmogorov complexity differ.


Sign in / Sign up

Export Citation Format

Share Document