scholarly journals ON VARIOUS NOTIONS OF PARALLELISM IN P SYSTEMS

2005 ◽  
Vol 16 (04) ◽  
pp. 683-705 ◽  
Author(s):  
OSCAR H. IBARRA ◽  
HSU-CHUN YEN ◽  
ZHE DANG

We consider the following definition (different from the standard definition in the literature) of "maximal parallelism" in the application of evolution rules in a P system G: Let R = {r1, …rk} be the set of (distinct) rules in the system. G operates in maximally parallel mode if at each step of the computation, a maximal subset of R is applied, and at most one instance of any rule is used at every step (thus at most k rules are applicable at any step). We refer to this system as a maximally parallel system. We look at the computing power of P systems under three semantics of parallelism. For a positive integer n ≤ k, define: n-Max-Parallel: At each step, nondeterministically select a maximal subset of at most n rules in R to apply (this implies that no larger subset is applicable). ≤ n-Parallel: At each step, nondeterministically select any subset of at most n rules in R to apply. n-Parallel: At each step, nondeterministically select any subset of exactly n rules in R to apply. In all three cases, if any rule in the subset selected is not applicable, then the whole subset is not applicable. When n = 1, the three semantics reduce to the Sequential mode. We focus on two popular models of P systems: multi-membrane catalytic systems and communicating P systems. We show that for these systems, n-Max-Parallel mode is strictly more powerful than any of the following three modes: Sequential, ≤ n-Parallel, or n-Parallel. For example, it follows from the result in [9] that a maximally parallel communicating P system is universal for n = 2. However, under the three limited modes of parallelism, the system is equivalent to a vector addition system, which is known to only define a recursive set. These generalize and refine the results for the case of 1-membrane systems recently reported in [3]. Some of the present results are rather surprising. For example, we show that a Sequential 1-membrane communicating P system can only generate a semilinear set, whereas with k membranes, it is equivalent to a vector addition system for any k ≥ 2 (thus the hierarchy collapses at 2 membranes - a rare collapsing result for nonuniversal P systems). We also give another proof (using vector addition systems) of the known result [8] that a 1-membrane catalytic system with only 3 catalysts and (non-prioritized) catalytic rules operating under 3-Max-Parallel mode can simulate any 2-counter machine M. Unlike in [8], our catalytic system needs only a fixed number of noncatalysts, independent of M. A simple cooperative system (SCO) is a P system where the only rules allowed are of the form a → v or of the form aa → v, where a is a symbol and v is a (possibly null) string of symbols not containing a. We show that a 9-Max-Parallel 1-membrane SCO is universal.

2005 ◽  
Vol 16 (05) ◽  
pp. 867-881 ◽  
Author(s):  
ZHE DANG ◽  
OSCAR H. IBARRA

In the standard definition of a P system, a computation step consists of a parallel application of a "maximal" set of nondeterministically chosen rules. Referring to this system as a parallel P system, we consider in this paper a sequential P system, in which each step consists of an application of a single nondeterministically chosen rule. We show the following:1. For 1-membrane purely catalytic systems (pure CS's), the sequential version is strictly weaker than the parallel version in that the former defines (i.e., generates) exactly the semilinear sets, whereas the latter is known to define nonrecursive sets.2. For 1-membrane communicating P systems (CPS's), the sequential version can only define a proper subclass of the semilinear sets, whereas the parallel version is known to define nonrecursive sets.3. Adding a new type of rule of the form: ab → axbyccomedcometo the CPS (a natural generalization of the rule ab → axbyccomein the original model), where x, y ∈ {here, out}, to the sequential 1-membrane CPS makes it equivalent to a vector addition system.4. Sequential 1-membrane symport/antiport systems (SA's) are equivalent to vector addition systems, contrasting the known result that the parallel versions can define nonrecursive sets.5. Sequential 1-membrane SA's whose rules have radius 1, (1,1), (1,2) (i.e., of the form (a, out), (a, in), (a, out; b, in), (a, out; bc, in)) generate exactly the semilinear sets. However, if the rules have radius 1, (1,1), (2,1) (i.e., of the form (ab, out; c, in)), the SA's can only generate a proper subclass of the semilinear sets.


2011 ◽  
Vol 22 (03) ◽  
pp. 547-564 ◽  
Author(s):  
AKIHIRO FUJIWARA ◽  
TAKESHI TATEISHI

In the present paper, we propose P systems that work in a constant number of steps. We first propose two P systems for computing multiple input logic functions. An input of the logic functions is a set of n binary numbers of m bits, and an output is a binary number defined by the logic functions. The first and second P systems compute AND and EX-OR functions for the input, and both of the P systems work in a constant number of steps by using O(mn) types of objects, a constant number of membranes, and evolution rules of size O(mn). Next, we propose a P system for the addition of two binary numbers of m bits. The P system works in a constant number of steps by using O(m) types of objects, a constant number of membranes and evolution rules of size O(m2). We also introduce a P system that computes the addition of two vectors of n binary numbers of m bits by using the above P system as a sub-system. The P system for vector addition works in a constant number of steps by using O(mn) types of objects, a constant number of membranes, and evolution rules of size O(m2n).


2014 ◽  
Vol 568-570 ◽  
pp. 802-806
Author(s):  
Yun Yun Niu ◽  
Zhi Gao Wang

It is known that the Common Algorithmic Problem (CAP) has a nice property that several other NP-complete problems can be reduced to it in linear time. In the literature, the decision version of this problem can be efficiently solved with a family of recognizer P systems with active membranes with three electrical charges working in the maximally parallel way. We here work with a variant of P systems with active membranes that do not use polarizations and present a semi-uniform solution to CAP in the minimally parallel mode.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 549
Author(s):  
Xiu Yin ◽  
Xiyu Liu ◽  
Minghe Sun ◽  
Qianqian Ren

A novel variant of NSN P systems, called numerical spiking neural P systems with a variable consumption strategy (NSNVC P systems), is proposed. Like the spiking rules consuming spikes in spiking neural P systems, NSNVC P systems introduce a variable consumption strategy by modifying the form of the production functions used in NSN P systems. Similar to the delay feature of the spiking rules, NSNVC P systems introduce a postponement feature into the production functions. The execution of the production functions in NSNVC P systems is controlled by two, i.e., polarization and threshold, conditions. Multiple synaptic channels are used to transmit the charges and the production values in NSNVC P systems. The proposed NSNVC P systems are a type of distributed parallel computing models with a directed graphical structure. The Turing universality of the proposed NSNVC P systems is proved as number generating/accepting devices. Detailed descriptions are provided for NSNVC P systems as number generating/accepting devices. In addition, a universal NSNVC P system with 66 neurons is constructed as a function computing device.


RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 64749-64755 ◽  
Author(s):  
Masoud Sadeghi ◽  
Javad Safari ◽  
Zohre Zarnegar

An efficient protocol is developed for the synthesis of 2-aminothiazoles from unfunctionalized methylcarbonyl compounds using Fe3O4 nanoparticle-N-halo reagent catalytic systems.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2413 ◽  
Author(s):  
Cheng Chen ◽  
Yang Miao ◽  
Kimmy De Winter ◽  
Hua-Jing Wang ◽  
Patrick Demeyere ◽  
...  

Transition-metal-catalyzed amide-bond formation from alcohols and amines is an atom-economic and eco-friendly route. Herein, we identified a highly active in situ N-heterocyclic carbene (NHC)/ruthenium (Ru) catalytic system for this amide synthesis. Various substrates, including sterically hindered ones, could be directly transformed into the corresponding amides with the catalyst loading as low as 0.25 mol.%. In this system, we replaced the p-cymene ligand of the Ru source with a relatively labile cyclooctadiene (cod) ligand so as to more efficiently obtain the corresponding poly-carbene Ru species. Expectedly, the weaker cod ligand could be more easily substituted with multiple mono-NHC ligands. Further high-resolution mass spectrometry (HRMS) analyses revealed that two tetra-carbene complexes were probably generated from the in situ catalytic system.


1977 ◽  
Vol 30 (1) ◽  
pp. 43 ◽  
Author(s):  
F Smith

The total polar contributions (AP) to three properties [infrared absorbance, mixing enthalpies (HM) and excess free energies (GE)] of alcohol + alkane (alp) systems are separated into a direct hydrogenbond contribution ( AB) from the formation of isolated imers and a dipole-dipole contribution (AD) resulting from dipolar correlation between these transient imers. Dilute concentration range data giving the AB contributions to these properties were found dependent only on OH group concentration (c) and are used to show the serious inadequacies of previous theories. A new proposed association model having only two parameters, that are fixed for all systems, does give good results for the AB contributions and further is quite compatible with the effect of temperature change and with the n.m.r. chemical shift (ε) and apparent mean square dipole moment (p2) data that are also studied. Thus association theory has been made quantitative for the AB contributions to three properties of a/p systems and the approach given for deriving models appears capable of wider application. The model was used to extrapolate the AB contributions into the concentrated alcohol range to thus give the AD contributions by difference. The latter are then shown to be the origin of the distinctive behaviour shown by lower alcohols in their pure and binary mixture properties either with alkanes or with other alcohols where for the latter the principle of congruence is shown to be completely misleading. Two contributions (Ag and AD) explain the different c dependence shown by the i.r., HM and the δ data for a/p systems and, qualitatively, the HM data for alcohol+alcohol systems while the existence of a significant dipole term is strongly supported by the remarkable similarities found between the p2(c) data and the derived dipole-dipole contribution to the entropy of a/p systems. A method is given for predicting latent heats and partial molar enthalpies of higher alcohols from the HM data for one a/p system and a refined estimate is made of the enthalpy of formation of a hydrogen bond. Polar structure and non-linear dielectric effects are also discussed.


2019 ◽  
Vol 6 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Xuan-Jun Wu ◽  
Hua-Jing Wang ◽  
Zhao-Qi Yang ◽  
Xiao-Sheng Tang ◽  
Ye Yuan ◽  
...  

An efficient and phosphine-free bidentate NHC/Ru catalytic system was discovered for the dehydrogenative amide synthesis from alcohols and amines.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1132
Author(s):  
Deting Kong ◽  
Yuan Wang ◽  
Xinyan Wu ◽  
Xiyu Liu ◽  
Jianhua Qu ◽  
...  

In this paper, we propose a novel clustering approach based on P systems and grid- density strategy. We present grid-density based approach for clustering high dimensional data, which first projects the data patterns on a two-dimensional space to overcome the curse of dimensionality problem. Then, through meshing the plane with grid lines and deleting sparse grids, clusters are found out. In particular, we present weighted spiking neural P systems with anti-spikes and astrocyte (WSNPA2 in short) to implement grid-density based approach in parallel. Each neuron in weighted SN P system contains a spike, which can be expressed by a computable real number. Spikes and anti-spikes are inspired by neurons communicating through excitatory and inhibitory impulses. Astrocytes have excitatory and inhibitory influence on synapses. Experimental results on multiple real-world datasets demonstrate the effectiveness and efficiency of our approach.


Sign in / Sign up

Export Citation Format

Share Document