CLASSIFICATION OF GAUGE-RELATED INVARIANT CONNECTIONS

1993 ◽  
Vol 05 (01) ◽  
pp. 69-103 ◽  
Author(s):  
R. BAUTISTA ◽  
J. MUCIÑO ◽  
E. NAHMAD-ACHAR ◽  
M. ROSENBAUM

Connection 1-forms on principal fiber bundles with arbitrary structure groups are considered, and a characterization of gauge-equivalent connections in terms of their associated holonomy groups is given. These results are then applied to invariant connections in the case where the symmetry group acts transitively on fibers, and both local and global conditions are derived which lead to an algebraic procedure for classifying orbits in the moduli space of these connections. As an application of the developed techniques, explicit solutions for SU (2) × SU (2)-symmetric connections over S2 × S2, with SU(2) structure group, are derived and classified into non-gauge-related families, and multi-instanton solutions are identified.

2005 ◽  
Vol 07 (02) ◽  
pp. 145-165 ◽  
Author(s):  
ALICE FIALOWSKI ◽  
MICHAEL PENKAVA

We consider versal deformations of 0|3-dimensional L∞ algebras, also called strongly homotopy Lie algebras, which correspond precisely to ordinary (non-graded) three-dimensional Lie algebras. The classification of such algebras is well-known, although we shall give a derivation of this classification using an approach of treating them as L∞ algebras. Because the symmetric algebra of a three-dimensional odd vector space contains terms only of exterior degree less than or equal to three, the construction of versal deformations can be carried out completely. We give a characterization of the moduli space of Lie algebras using deformation theory as a guide to understanding the picture.


1956 ◽  
Vol 10 ◽  
pp. 105-123 ◽  
Author(s):  
Hideki Ozeki

In Introduction In differential geometry of linear connections, A. Nijenhuis has introduced the concepts of local holonomy group and infinitesimal holonomy group and obtained many interesting results [6].The purpose of the present note is to generalize his results to the case of connections in arbitrary principal fiber bundles with Lie structure groups. The concept of local holonomy group can be immediately generalized and has been already utilized by S. Kobayashi [4]. Our main results are Theorems 4 and 5 on infinitesimal holonomy groups. The proofs depend on a little sharpened form of a theorem of Ambrose-Singer [1]. In the case of linear connections, our infinitesimal holonomy group coincides with that of Nijenhuis, as we shall show in Section 6.


2013 ◽  
Vol 10 (08) ◽  
pp. 1360015
Author(s):  
CARLOS TEJERO PRIETO

We study the Yang–Mills functional for principal fiber bundles with structure group a compact Lie group K over a Kähler manifold. In particular, we analyze the absolute minimizers for this functional and prove that they are exactly the Einstein K-connections. By means of the structure of the Yang–Mills functional at an absolute minimum, we prove that the characteristic classes of a principal K-bundle which admits an Einstein connection satisfy two inequalities. One of them is a generalization of the Bogomolov inequality whereas the other is an inequality related to the center of the structure group. Therefore, this way we offer a new and natural proof of the Bogomolov inequality that helps understanding its origin. Finally, in view of the Hitchin–Kobayashi correspondence we prove that every (poly-)stable principal Kℂ-bundle has to satisfy this generalized Bogomolov type inequality.


1957 ◽  
Vol 12 ◽  
pp. 145-146 ◽  
Author(s):  
Albert Nijenhuis

In a recent paper [1], H. Ozeki has extended the author’s results [2] on local and infinitesimal holonomy groups for connections in linear fiber bundles (whose fiber is a vector space) to general fiber bundles whose structure group is a Lie group. Ozeki’s Lemma 7 (corresponding to the author’s Lemma 5.2) appears to be rather crucial in the development, while the proof is somewhat involved.—This note intends to present a more direct proof of the lemma, stating a case in which the local holonomy group H*(x)and the infinitesimal holonomy group H’(x)coincide:


Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 640
Author(s):  
Natalia R. Moyetta ◽  
Fabián O. Ramos ◽  
Jimena Leyria ◽  
Lilián E. Canavoso ◽  
Leonardo L. Fruttero

Hemocytes, the cells present in the hemolymph of insects and other invertebrates, perform several physiological functions, including innate immunity. The current classification of hemocyte types is based mostly on morphological features; however, divergences have emerged among specialists in triatomines, the insect vectors of Chagas’ disease (Hemiptera: Reduviidae). Here, we have combined technical approaches in order to characterize the hemocytes from fifth instar nymphs of the triatomine Dipetalogaster maxima. Moreover, in this work we describe, for the first time, the ultrastructural features of D. maxima hemocytes. Using phase contrast microscopy of fresh preparations, five hemocyte populations were identified and further characterized by immunofluorescence, flow cytometry and transmission electron microscopy. The plasmatocytes and the granulocytes were the most abundant cell types, although prohemocytes, adipohemocytes and oenocytes were also found. This work sheds light on a controversial aspect of triatomine cell biology and physiology setting the basis for future in-depth studies directed to address hemocyte classification using non-microscopy-based markers.


Landslides ◽  
2021 ◽  
Author(s):  
Chiara Crippa ◽  
Elena Valbuzzi ◽  
Paolo Frattini ◽  
Giovanni B. Crosta ◽  
Margherita C. Spreafico ◽  
...  

AbstractLarge slow rock-slope deformations, including deep-seated gravitational slope deformations and large landslides, are widespread in alpine environments. They develop over thousands of years by progressive failure, resulting in slow movements that impact infrastructures and can eventually evolve into catastrophic rockslides. A robust characterization of their style of activity is thus required in a risk management perspective. We combine an original inventory of slow rock-slope deformations with different PS-InSAR and SqueeSAR datasets to develop a novel, semi-automated approach to characterize and classify 208 slow rock-slope deformations in Lombardia (Italian Central Alps) based on their displacement rate, kinematics, heterogeneity and morphometric expression. Through a peak analysis of displacement rate distributions, we characterize the segmentation of mapped landslides and highlight the occurrence of nested sectors with differential activity and displacement rates. Combining 2D decomposition of InSAR velocity vectors and machine learning classification, we develop an automatic approach to characterize the kinematics of each landslide. Then, we sequentially combine principal component and K-medoids cluster analyses to identify groups of slow rock-slope deformations with consistent styles of activity. Our methodology is readily applicable to different landslide datasets and provides an objective and cost-effective support to land planning and the prioritization of local-scale studies aimed at granting safety and infrastructure integrity.


2021 ◽  
Vol 3 (3) ◽  
pp. 376-388
Author(s):  
Francisco J. Sevilla ◽  
Andrea Valdés-Hernández ◽  
Alan J. Barrios

We perform a comprehensive analysis of the set of parameters {ri} that provide the energy distribution of pure qutrits that evolve towards a distinguishable state at a finite time τ, when evolving under an arbitrary and time-independent Hamiltonian. The orthogonality condition is exactly solved, revealing a non-trivial interrelation between τ and the energy spectrum and allowing the classification of {ri} into families organized in a 2-simplex, δ2. Furthermore, the states determined by {ri} are likewise analyzed according to their quantum-speed limit. Namely, we construct a map that distinguishes those ris in δ2 correspondent to states whose orthogonality time is limited by the Mandelstam–Tamm bound from those restricted by the Margolus–Levitin one. Our results offer a complete characterization of the physical quantities that become relevant in both the preparation and study of the dynamics of three-level states evolving towards orthogonality.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 733
Author(s):  
Nobutaka Ebata ◽  
Masashi Fujita ◽  
Shota Sasagawa ◽  
Kazuhiro Maejima ◽  
Yuki Okawa ◽  
...  

Gallbladder cancer (GBC), a rare but lethal disease, is often diagnosed at advanced stages. So far, molecular characterization of GBC is insufficient, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. We performed a transcriptome analysis of both coding and non-coding RNAs from 36 GBC fresh-frozen samples. The results were integrated with those of comprehensive mutation profiling based on whole-genome or exome sequencing. The clustering analysis of RNA-seq data facilitated the classification of GBCs into two subclasses, characterized by high or low expression levels of TME (tumor microenvironment) genes. A correlation was observed between gene expression and pathological immunostaining. TME-rich tumors showed significantly poor prognosis and higher recurrence rate than TME-poor tumors. TME-rich tumors showed overexpression of genes involved in epithelial-to-mesenchymal transition (EMT) and inflammation or immune suppression, which was validated by immunostaining. One non-coding RNA, miR125B1, exhibited elevated expression in stroma-rich tumors, and miR125B1 knockout in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutation profiles revealed TP53 (47%) as the most commonly mutated gene, followed by ELF3 (13%) and ARID1A (11%). Mutations of ARID1A, ERBB3, and the genes related to the TGF-β signaling pathway were enriched in TME-rich tumors. This comprehensive analysis demonstrated that TME, EMT, and TGF-β pathway alterations are the main drivers of GBC and provides a new classification of GBCs that may be useful for therapeutic decision-making.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1044
Author(s):  
Daniel Jones ◽  
Jeffery A. Secrest

The natural extension to the SU(5) Georgi-Glashow grand unification model is to enlarge the gauge symmetry group. In this work, the SU(7) symmetry group is examined. The Cartan subalgebra is determined along with their commutation relations. The associated roots and weights of the SU(7) algebra are derived and discussed. The raising and lowering operators are explicitly constructed and presented. Higher dimensional representations are developed by graphical as well as tensorial methods. Applications of the SU(7) Lie group to supersymmetric grand unification as well as applications are discussed.


Sign in / Sign up

Export Citation Format

Share Document