DOCUMENT IMAGE BINARISATION USING A SUPERVISED NEURAL NETWORK

2008 ◽  
Vol 18 (05) ◽  
pp. 405-418 ◽  
Author(s):  
ADNAN KHASHMAN ◽  
BORAN SEKEROGLU

Advances in digital technologies have allowed us to generate more images than ever. Images of scanned documents are examples of these images that form a vital part in digital libraries and archives. Scanned degraded documents contain background noise and varying contrast and illumination, therefore, document image binarisation must be performed in order to separate foreground from background layers. Image binarisation is performed using either local adaptive thresholding or global thresholding; with local thresholding being generally considered as more successful. This paper presents a novel method to global thresholding, where a neural network is trained using local threshold values of an image in order to determine an optimum global threshold value which is used to binarise the whole image. The proposed method is compared with five local thresholding methods, and the experimental results indicate that our method is computationally cost-effective and capable of binarising scanned degraded documents with superior results.

Author(s):  
Wismu Sunarmodo ◽  
Anis Kamilah Hayati

In the processing and analysis of remote-sensing data, cloud that interferes with earth-surface data is still a challenge. Many methods have already been developed to identify cloud, and these can be classified into two categories: single-date and multi-date identification. Most of these methods also utilize the thresholding method which itself can be divided into two categories: local thresholding and global thresholding. Local thresholding works locally and is different for each pixel, while global thresholding works similarly for every pixel. To determine the global threshold, two approaches are commonly used: fixed value as threshold and adapted threshold. In this paper, we propose a cloud-identification method with an adapted threshold using K-means clustering. Each related multitemporal pixel is processed using K-means clustering to find the threshold. The threshold is then used to distinguish clouds from non-clouds. By using the L8 Biome cloud-cover assessment as a reference, the proposed method results in Kappa coefficient of above 0.9. Furthermore, the proposed method has lower levels of false negatives and omission errors than the FMask method.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Eka Prakarsa Mandyartha ◽  
Chastine Fatichah

Abstract. Segmentation of Acute Lymphoblastic Leukemia (ALL) images can be used to identify the presence of ALL disease. In this paper, three-level local thresholdings based on Otsu method is presented for leucocytes segmentation in ALL image. Firstly, a method based on Gram-Schmidt orthogonalization theory is applied to partition the input image into several sub-images. The proposed method extends Otsu’s bi-level thresholding to three-level thresholding method  to find two local threshold values that maximize between-class variance. Using the two local threshold values and three-level local thresholding technique then segmenting each of sub-images into three regions, e.g. nucleus, cytoplasm, and background. To evaluate the performance of the proposed method, 32 peripheral blood smear images are used. The performance of the proposed method is compared with manually segmented ground truth using Zijdenbos similarity index (ZSI), precision, and recall. An experimental evaluation demonstrates superior performance over three-level global thresholding for ALL image segmentation.Keywords: three-level local thresholding, acute lymphoblastic leukemia, three-level Otsu thresholding, gram-schmidt orthogonalization Abstrak. Segmentasi citra Limfoblastik Leukemia Akut (LLA) dapat digunakan untuk mengidentifikasi kehadiran penyakit LLA. Pada penelitian ini diusulkan metode three-level local thresholding berbasis metode Otsu untuk segmentasi leukosit pada citra LLA. Pertama-tama, metode berbasis teori ortogonalisasi Gram-Schmidt diaplikasikan untuk membagi citra LLA menjadi sub-sub citra. Metode yang diusulkan memperluas metode bi-level thresholding Otsu ke dalam kasus three-level thresholding untuk pencarian dua nilai ambang lokal tiap sub-citra yang memaksimumkan varian antar kelas. Dengan nilai ambang jamak lokal tersebut, teknik three-level local thresholding selanjutnya  mensegmentasi tiap sub-citra ke dalam tiga region, yaitu nukelus, sitoplasma, dan latar belakang. Untuk mengevaluasi performa metode usulan, 32 citra uji digunakan. Performa metode yang diusulkan dibandingkan dengan citra segmentasi manual menggunakan Zijdenbos similarity index (ZSI), presisi, dan recall. Hasil uji coba menunjukkan performa three-level local thresholding lebih unggul daripada metode three-level global thresholding untuk segmentasi citra LLA. Kata Kunci: three-level local thresholding, leukemia limfoblastik akut, three-level Otsu thresholding, ortogonalisasi gram-schmidt


2021 ◽  
pp. 107754632110069
Author(s):  
Sandeep Sony ◽  
Ayan Sadhu

In this article, multivariate empirical mode decomposition is proposed for damage localization in structures using limited measurements. Multivariate empirical mode decomposition is first used to decompose the acceleration responses into their mono-component modal responses. The major contributing modal responses are then used to evaluate the modal energy for the respective modes. A damage localization feature is proposed by calculating the percentage difference in the modal energies of damaged and undamaged structures, followed by the determination of the threshold value of the feature. The feature of the specific sensor location exceeding the threshold value is finally used to identify the location of structural damage. The proposed method is validated using a suite of numerical and full-scale studies. The validation is further explored using various limited measurement cases for evaluating the feasibility of using a fewer number of sensors to enable cost-effective structural health monitoring. The results show the capability of the proposed method in identifying as minimal as 2% change in global modal parameters of structures, outperforming the existing time–frequency methods to delineate such minor global damage.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Jia-Rong Xiao ◽  
Pei-Che Chung ◽  
Hung-Yi Wu ◽  
Quoc-Hung Phan ◽  
Jer-Liang Andrew Yeh ◽  
...  

The strawberry (Fragaria × ananassa Duch.) is a high-value crop with an annual cultivated area of ~500 ha in Taiwan. Over 90% of strawberry cultivation is in Miaoli County. Unfortunately, various diseases significantly decrease strawberry production. The leaf and fruit disease became an epidemic in 1986. From 2010 to 2016, anthracnose crown rot caused the loss of 30–40% of seedlings and ~20% of plants after transplanting. The automation of agriculture and image recognition techniques are indispensable for detecting strawberry diseases. We developed an image recognition technique for the detection of strawberry diseases using a convolutional neural network (CNN) model. CNN is a powerful deep learning approach that has been used to enhance image recognition. In the proposed technique, two different datasets containing the original and feature images are used for detecting the following strawberry diseases—leaf blight, gray mold, and powdery mildew. Specifically, leaf blight may affect the crown, leaf, and fruit and show different symptoms. By using the ResNet50 model with a training period of 20 epochs for 1306 feature images, the proposed CNN model achieves a classification accuracy rate of 100% for leaf blight cases affecting the crown, leaf, and fruit; 98% for gray mold cases, and 98% for powdery mildew cases. In 20 epochs, the accuracy rate of 99.60% obtained from the feature image dataset was higher than that of 1.53% obtained from the original one. This proposed model provides a simple, reliable, and cost-effective technique for detecting strawberry diseases.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2097 ◽  
Author(s):  
Chenhua Ni ◽  
Xiandong Ma

Successful development of a marine wave energy converter (WEC) relies strongly on the development of the power generation device, which needs to be efficient and cost-effective. An innovative multi-input approach based on the Convolutional Neural Network (CNN) is investigated to predict the power generation of a WEC system using a double-buoy oscillating body device (OBD). The results from the experimental data show that the proposed multi-input CNN performs much better at predicting results compared with the conventional artificial network and regression models. Through the power generation analysis of this double-buoy OBD, it shows that the power output has a positive correlation with the wave height when it is higher than 0.2 m, which becomes even stronger if the wave height is higher than 0.6 m. Furthermore, the proposed approach associated with the CNN algorithm in this study can potentially detect the changes that could be due to presence of anomalies and therefore be used for condition monitoring and fault diagnosis of marine energy converters. The results are also able to facilitate controlling of the electricity balance among energy conversion, wave power produced and storage.


2021 ◽  
Vol 12 (1) ◽  
pp. 69-83
Author(s):  
Saygin Siddiq Ahmed ◽  
Ahmed R. J. Almusawi ◽  
Bülent Yilmaz ◽  
Nuran Dogru

Abstract. This study introduces a new control method for electromyography (EMG) in a prosthetic hand application with a practical design of the whole system. The hand is controlled by a motor (which regulates a significant part of the hand movement) and a microcontroller board, which is responsible for receiving and analyzing signals acquired by a Myoware muscle device. The Myoware device accepts muscle signals and sends them to the controller. The controller interprets the received signals based on the designed artificial neural network. In this design, the muscle signals are read and saved in a MATLAB system file. After neural network program processing by MATLAB, they are then applied online to the prosthetic hand. The obtained signal, i.e., electromyogram, is programmed to control the motion of the prosthetic hand with similar behavior to a real human hand. The designed system is tested on seven individuals at Gaziantep University. Due to the sufficient signal of the Mayo armband compared to Myoware sensors, Mayo armband muscle is applied in the proposed system. The discussed results have been shown to be satisfactory in the final proposed system. This system was a feasible, useful, and cost-effective solution for the handless or amputated individuals. They have used the system in their day-to-day activities that allowed them to move freely, easily, and comfortably.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron N. Shugar ◽  
B. Lee Drake ◽  
Greg Kelley

AbstractAn innovative approach for the rapid identification of wood species is presented. By combining X-ray fluorescence spectrometry with convolutional neural network machine learning, 48 different wood specimens were clearly differentiated and identified with a 99% accuracy. Wood species identification is imperative to assess illegally logged and transported lumber. Alternative options for identification can be time consuming and require some level of sampling. This non-invasive technique offers a viable, cost-effective alternative to rapidly and accurately identify timber in efforts to support environmental protection laws and regulations.


2021 ◽  
Vol 7 (10) ◽  
pp. 850
Author(s):  
Veena Mayya ◽  
Sowmya Kamath Shevgoor ◽  
Uma Kulkarni ◽  
Manali Hazarika ◽  
Prabal Datta Barua ◽  
...  

Microbial keratitis is an infection of the cornea of the eye that is commonly caused by prolonged contact lens wear, corneal trauma, pre-existing systemic disorders and other ocular surface disorders. It can result in severe visual impairment if improperly managed. According to the latest World Vision Report, at least 4.2 million people worldwide suffer from corneal opacities caused by infectious agents such as fungi, bacteria, protozoa and viruses. In patients with fungal keratitis (FK), often overt symptoms are not evident, until an advanced stage. Furthermore, it has been reported that clear discrimination between bacterial keratitis and FK is a challenging process even for trained corneal experts and is often misdiagnosed in more than 30% of the cases. However, if diagnosed early, vision impairment can be prevented through early cost-effective interventions. In this work, we propose a multi-scale convolutional neural network (MS-CNN) for accurate segmentation of the corneal region to enable early FK diagnosis. The proposed approach consists of a deep neural pipeline for corneal region segmentation followed by a ResNeXt model to differentiate between FK and non-FK classes. The model trained on the segmented images in the region of interest, achieved a diagnostic accuracy of 88.96%. The features learnt by the model emphasize that it can correctly identify dominant corneal lesions for detecting FK.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 13
Author(s):  
Raveendra K ◽  
R Vinoth Kanna

Automatic logo based document image retrieval process is an essential and mostly used method in the feature extraction applications. In this paper the architecture of Convolutional Neural Network (CNN) was elaborately explained with pictorial representations in order to understand the complex Convolutional Neural Networks process in a simplified way. The main objective of this paper is to effectively utilize the CNN in the process of automatic logo based document image retrieval methods.  


Sign in / Sign up

Export Citation Format

Share Document