An improved car-following model from the perspective of driver’s forecast behavior

2017 ◽  
Vol 28 (04) ◽  
pp. 1750046 ◽  
Author(s):  
Da-Wei Liu ◽  
Zhong-Ke Shi ◽  
Wen-Huan Ai

In this paper, a new car-following model considering effect of the driver’s forecast behavior is proposed based on the full velocity difference model (FVDM). Using the new model, we investigate the starting process of the vehicle motion under a traffic signal and find that the delay time of vehicle motion is reduced. Then the stability condition of the new model is derived and the modified Korteweg–de Vries (mKdV) equation is constructed to describe the traffic behavior near the critical point. Numerical simulation is compatible with the analysis of theory such as density wave, hysteresis loop, which shows that the new model is reasonable. The results show that considering the effect of driver’s forecast behavior can help to enhance the stability of traffic flow.

2017 ◽  
Vol 31 (34) ◽  
pp. 1750317 ◽  
Author(s):  
Geng Zhang ◽  
Hui Liu

To reveal the impact of the current vehicle’s interruption information on traffic flow, a new car-following model with consideration of the current vehicle’s interruption is proposed and the influence of the current vehicle’s interruption on traffic stability is investigated through theoretical analysis and numerical simulation. By linear analysis, the linear stability condition of the new model is obtained and the negative influence of the current vehicle’s interruption on traffic stability is shown in the headway-sensitivity space. Through nonlinear analysis, the modified Korteweg–de Vries (mKdV) equation of the new model near the critical point is derived and it can be used to describe the propagating behavior of the traffic density wave. Finally, numerical simulation confirms the analytical results, which shows that the current vehicle’s interruption information can destabilize traffic flow and should be considered in real traffic.


2018 ◽  
Vol 32 (01) ◽  
pp. 1750366 ◽  
Author(s):  
Zhizhan Jin ◽  
Zhipeng Li ◽  
Rongjun Cheng ◽  
Hongxia Ge

Based on the two velocity difference model (TVDM), an extended car-following model is developed to investigate the effect of driver’s memory and jerk on traffic flow in this paper. By using linear stability analysis, the stability conditions are derived. And through nonlinear analysis, the time-dependent Ginzburg–Landau (TDGL) equation and the modified Korteweg–de Vries (mKdV) equation are obtained, respectively. The mKdV equation is constructed to describe the traffic behavior near the critical point. The evolution of traffic congestion and the corresponding energy consumption are discussed. Numerical simulations show that the improved model is found not only to enhance the stability of traffic flow, but also to depress the energy consumption, which are consistent with the theoretical analysis.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650243 ◽  
Author(s):  
Guanghan Peng ◽  
Li Qing

In this paper, a new car-following model is proposed by considering the drivers’ aggressive characteristics. The stable condition and the modified Korteweg-de Vries (mKdV) equation are obtained by the linear stability analysis and nonlinear analysis, which show that the drivers’ aggressive characteristics can improve the stability of traffic flow. Furthermore, the numerical results show that the drivers’ aggressive characteristics increase the stable region of traffic flow and can reproduce the evolution and propagation of small perturbation.


2014 ◽  
Vol 28 (24) ◽  
pp. 1450191 ◽  
Author(s):  
Geng Zhang ◽  
Di-Hua Sun ◽  
Hui Liu ◽  
Min Zhao

In recent years, the influence of drivers' behaviors on traffic flow has attracted considerable attention according to Transportation Cyber Physical Systems. In this paper, an extended car-following model is presented by considering drivers' timid or aggressive characteristics. The impact of drivers' timid or aggressive characteristics on the stability of traffic flow has been analyzed through linear stability theory and nonlinear reductive perturbation method. Numerical simulation shows that the propagating behavior of traffic density waves near the critical point can be described by the kink–antikink soliton of the mKdV equation. The good agreement between the numerical simulation and the analytical results shows that drivers' characteristics play an important role in traffic jamming transition.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Ammar Jafaripournimchahi ◽  
Lu Sun ◽  
Wusheng Hu

We developed a new car-following model to investigate the effects of driver anticipation and driver memory on traffic flow. The changes of headway, relative velocity, and driver memory to the vehicle in front are introduced as factors of driver’s anticipation behavior. Linear and nonlinear stability analyses are both applied to study the linear and nonlinear stability conditions of the new model. Through nonlinear analysis a modified Korteweg-de Vries (mKdV) equation was constructed to describe traffic flow near the traffic near the critical point. Numerical simulation shows that the stability of traffic flow can be effectively enhanced by the effect of driver anticipation and memory. The starting and breaking process of vehicles passing through the signalized intersection considering anticipation and driver memory are presented. All results demonstrate that the AMD model exhibit a greater stability as compared to existing car-following models.


2018 ◽  
Vol 32 (08) ◽  
pp. 1850020 ◽  
Author(s):  
Tong Zhou ◽  
Dong Chen ◽  
Weining Liu

Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.


2018 ◽  
Vol 32 (26) ◽  
pp. 1850314 ◽  
Author(s):  
Di-Hua Sun ◽  
Peng Tan ◽  
Dong Chen ◽  
Fei Xie ◽  
Lin-Hui Guan

In this paper, we propose a new car-following model considering driver’s timid and aggressive characteristics on a gradient highway. Based on the control theory, the linear stability analysis of the model was conducted. It shows that the stability of traffic flow on the gradient highway varies with the drivers’ characteristics and the slope. Adopting nonlinear stability analysis, the Burgers equation and modified Korteweg–de Vries (mKdV) equation are derived to describe the triangular shock waves and kink–antikink waves, respectively. The theoretical and numerical results show that aggressive drivers tend to stabilize traffic flow but timid drivers tend to destabilize traffic flow on a gradient highway both on an uphill situation and on a downhill situation. Moreover, the slope of the road also plays an important role in traffic jamming transition.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2879
Author(s):  
Hongxia Ge ◽  
Siteng Li ◽  
Chunyue Yan

With the continuous advancement of electronic technology, auto parts manufacturing institutions are gradually applying electronic throttles to automobiles for precise control. Based on the visual angle model (VAM), a car-following model considering the electronic throttle angle of the preceding vehicle is proposed. The stability conditions are obtained through linear stability analysis. By means of nonlinear analysis, the time-dependent Ginzburg–Landau (TDGL) equation is derived first, and then the modified Korteweg-de-Vries (mKdV) equation is derived. The relationship between the two is thus obtained. Finally, in the process of numerical simulations and exploration, it is shown how the visual angle and electronic throttle affect the stability of traffic flow. The simulation results in MATLAB software verify the validity of the model, indicating that the visual angle and electronic throttle can improve traffic stability.


2014 ◽  
Vol 488-489 ◽  
pp. 1289-1294
Author(s):  
Lu Jing ◽  
Peng Jun Zheng

In this paper, a modified car-following model is proposed, in which, the weather and road conditions are taken into account. The stability condition of the model is obtained by using the control theory method. We investigated the property of the model using linear and nonlinear analyses. The Kortewegde Vries equation near the neutral stability line and the modified Kortewegde Vries equation around the critical point are derived by applying the reductive perturbation method. The traffic jam could be thus described by the KdV soliton and the kinkanti-kink soliton for the KdV equation and mKdV equation, respectively. Numerical simulations are carried out to verify the model, and good results are obtained with the new model.


2015 ◽  
Vol 738-739 ◽  
pp. 489-492
Author(s):  
Tong Zhou ◽  
Yu Xuan Li ◽  
Zhan Wei Bai

Based on the optimal velocity difference model (for short, OVDM) proposed by Peng et al., a new car-following model is presented by considering the leading cars’ acceleration. The linear stability condition of the new model is obtained by using the linear stability theory. Numerical simulation shows that the new model can avoid the disadvantage of negative velocity occurred in the OVDM by adjusting the coefficient of the leaders acceleration and can stabilize traffic flow more effectively.


Sign in / Sign up

Export Citation Format

Share Document