The effect of anisotropy on the traffic flow behavior: Investigation of the correlation created by a single node on two-lane roads

2020 ◽  
Vol 31 (04) ◽  
pp. 2050060
Author(s):  
Zineb Tahiri ◽  
Kamal Jetto ◽  
Marouane Bouadi ◽  
Abdelilah Benyoussef ◽  
Abdallah El Kenz

In this paper, we have tried to point out the features of the correlation between the lanes of a two-lane road, created by the entry of this facility. For this purpose, we have adopted a quasi-one-dimensional system composed of a diverging node connecting two roads and where no lanes’ changing is allowed. Our study has highlighted the strong effect of a node. We have found that if we create a disturbance in one lane, a spontaneous symmetry breaking occurs in the whole system. In fact, a self-anisotropy is produced at the node, to which the system responds via a self-organization mechanism. Those results have urged us to investigate the anisotropy as an extrinsic parameter. By privileging one lane over the other at the node, we have been able to confirm that the system can always get self-organized and that three phases can be established: the symmetric high density phase, the asymmetric low density phase and the asymmetric phase of transition low density/high density. Finally, we have found that the system is strongly correlated when it is in a symmetric phase, and is not when in an asymmetric phase. This finding brought us to the assumption that the cross-correlation of the observables of a quasi-one-dimensional system can be considered as an order parameter that defines the phases’ transitions.

2000 ◽  
Vol 26 (4) ◽  
pp. 282-288
Author(s):  
D. M. Apal’kov ◽  
A. A. Zvyagin ◽  
D. M. Apal’kov ◽  
A. A. Zvyagin

2009 ◽  
Vol 620-622 ◽  
pp. 583-586
Author(s):  
Yi Qiang Wu ◽  
Hayashi Kazuo ◽  
Ying Chun Cai

In order to quantify the relationship between collapse-shrinkage properties and colorimetric parameters on plantation-grown eucalyptus as solid-wood furniture, measurements of the above-mentioned indices were carried out on five species of plantation-grown Eucalyptus (Eucalyptus urophylla, E.grandis, E.urophylla×grandis, E.grandis ×urophylla and E.cloeziana) under three kinds of heat-treat patterns(heat, steaming and combination of heat and steaming) and their correlations were investigated by means of regression analysis. Results showed that for the former four low-density prone-collapse eucalypt, collapse-shrinkage properties were strongly correlated with L* and △E*( R2 ≥0.85) under the above treated conditions, while weak linear correlation with a* and b*. For high-density E.cloeziana with extremely lower collapse, the four colorimetric indexes were lightly correlated with collapse-shrinkage properties. Thus, it can be concluded that L* and △Eab* may be regarded as the two primary and more reliable predictors of shrinkage-collapse parameters for low-density collapse-prone eucalypt wood.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1188
Author(s):  
Alexander Sobol ◽  
Peter Güntert ◽  
Roland Riek

A one-dimensional gas comprising N point particles undergoing elastic collisions within a finite space described by a Sinai billiard generating identical dynamical trajectories are calculated and analyzed with regard to strict extensivity of the entropy definitions of Boltzmann–Gibbs. Due to the collisions, trajectories of gas particles are strongly correlated and exhibit both chaotic and periodic properties. Probability distributions for the position of each particle in the one-dimensional gas can be obtained analytically, elucidating that the entropy in this special case is extensive at any given number N. Furthermore, the entropy obtained can be interpreted as a measure of the extent of interactions between molecules. The results obtained for the non-mixable one-dimensional system are generalized to mixable one- and two-dimensional systems, the latter by a simple example only providing similar findings.


2020 ◽  
Author(s):  
Takayuki Umeda ◽  
Naru Tsujine ◽  
Yasuhiro Nariyuki

<p>The stability of contact discontinuities formed by the relaxation of two Maxwellian plasmas with different number densities but the same plasma thermal pressure is studied by means of a one-dimensional electrostatic full-Vlasov simulation. Our simulation runs with various combinations of ion-to-electron ratios of the high-density and low-density regions showed that transition layers of density and temperature without jump in the plasma thermal pressure are obtained when the electron temperatures in the high-density and low-density regions are almost equal to each other. However, the stable structure of the contact discontinuity with a sharp transition layer on the Debye scale is not maintained. It is suggested that non-Maxwellian velocity distributions are necessary for the stable structure of contact discontinuities. A direct comparison between full- and hybrid-Vlasov simulations is also made. </p>


Author(s):  
L. Mulestagno ◽  
J.C. Holzer ◽  
P. Fraundorf

Due to the wealth of information, both analytical and structural that can be obtained from it TEM always has been a favorite tool for the analysis of process-induced defects in semiconductor wafers. The only major disadvantage has always been, that the volume under study in the TEM is relatively small, making it difficult to locate low density defects, and sample preparation is a somewhat lengthy procedure. This problem has been somewhat alleviated by the availability of efficient low angle milling.Using a PIPS® variable angle ion -mill, manufactured by Gatan, we have been consistently obtaining planar specimens with a high quality thin area in excess of 5 × 104 μm2 in about half an hour (milling time), which has made it possible to locate defects at lower densities, or, for defects of relatively high density, obtain information which is statistically more significant (table 1).


1975 ◽  
Vol 33 (02) ◽  
pp. 256-270
Author(s):  
R. M Howell ◽  
S. L. M Deacon

SummaryElectron microscopy and particle electrophoresis were found to be complementary techniques with which to complete the physical data from an earlier study on barium sulphates used to adsorb clotting factors from serum. The differences revealed by scanning electron microscopy (S. E. M.) in the physical shape of low and high density grades of barium sulphate particles appear to be of greater significance than charge as expressed by electrophoretic mobility, in determining whether or not precursor or preformed factor Xa is eluted.This conclusion was based on the finding that at pH values close to 7, where the adsorption from serum occurs, all samples with the exception of natural barytes were uncharged. However as the high-density, or soil-grade, was found by S. E. M. to consist of large solid crystals it was suggested that this shape might induce activation of factor X as a result of partial denaturation and consequent unfolding of the adsorbed protein. In contrast, uptake of protein into the centre of the porous aggregates revealed by S. E. M. pictures of low-density or X-ray grade barium sulphate may afford protection against denaturation and exposure of the enzyme site.The porous nature of particles of low-density barium sulphate compared with the solid crystalline forms of other grades accounts not only for its lower bulk density but also for its greater surface/gram ratio which is reflected by an ability to adsorb more protein from serum.Neither technique produced evidence from any of the samples to indicate the presence of stabilising agents sometimes used to coat particles in barium meals.


1998 ◽  
Vol 63 (6) ◽  
pp. 761-769 ◽  
Author(s):  
Roland Krämer ◽  
Arno F. Münster

We describe a method of stabilizing the dominant structure in a chaotic reaction-diffusion system, where the underlying nonlinear dynamics needs not to be known. The dominant mode is identified by the Karhunen-Loeve decomposition, also known as orthogonal decomposition. Using a ionic version of the Brusselator model in a spatially one-dimensional system, our control strategy is based on perturbations derived from the amplitude function of the dominant spatial mode. The perturbation is used in two different ways: A global perturbation is realized by forcing an electric current through the one-dimensional system, whereas the local perturbation is performed by modulating concentrations of the autocatalyst at the boundaries. Only the global method enhances the contribution of the dominant mode to the total fluctuation energy. On the other hand, the local method leads to simple bulk oscillation of the entire system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Milad Jangjan ◽  
Mir Vahid Hosseini

AbstractWe theoretically report the finding of a new kind of topological phase transition between a normal insulator and a topological metal state where the closing-reopening of bandgap is accompanied by passing the Fermi level through an additional band. The resulting nontrivial topological metal phase is characterized by stable zero-energy localized edge states that exist within the full gapless bulk states. Such states living on a quasi-one-dimensional system with three sublattices per unit cell are protected by hidden inversion symmetry. While other required symmetries such as chiral, particle-hole, or full inversion symmetry are absent in the system.


Sign in / Sign up

Export Citation Format

Share Document