scholarly journals POTENTIALS OF COUPLED QUINTESSENCE BASED ON A DILATON

2007 ◽  
Vol 22 (40) ◽  
pp. 3073-3082 ◽  
Author(s):  
Z. G. HUANG ◽  
Q. Q. SUN ◽  
W. FANG ◽  
H. Q. LU

In this paper, we regard dilaton in Weyl-scaled induced gravitational theory as coupled quintessence, which is called DCQ model by us. Parametrization of the dark energy model is a good method by which we can construct the scalar potential directly from the effective equation of state function ωσ(z) describing the properties of the dark energy. Applying this method to the DCQ model, we consider four parametrizations of ω(z) and investigate the features of the constructed DCQ potentials, which possess two different evolutive behaviors called "O" mode and "E" mode. Lastly, we comprise the results of the constructed DCQ model with those of quintessence model numerically.

2006 ◽  
Vol 21 (21) ◽  
pp. 1683-1689 ◽  
Author(s):  
HUI LI ◽  
ZONG-KUAN GUO ◽  
YUAN-ZHONG ZHANG

We construct the non-canonical kinetic term of a k-essence field directly from the effective equation of state function wk(z), which describes the properties of the dark energy. Adopting the usual parametrizations of equation of state, we numerically reproduce the shape of the non-canonical kinetic term and discuss some features of the constructed form of k-essence.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Younas ◽  
Abdul Jawad ◽  
Saba Qummer ◽  
H. Moradpour ◽  
Shamaila Rani

Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed ) and cosmological plane (ωd-ωd′, where ωd′ is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The ωd-ωd′ plane represents the thawing region for all dark energy models.


2012 ◽  
Vol 27 (16) ◽  
pp. 1250085 ◽  
Author(s):  
ZHUO-PENG HUANG ◽  
YUE-LIANG WU

A holographic dark energy model characterized by the conformal-age-like length scale [Formula: see text] is motivated from the four-dimensional space–time volume at cosmic time t in the flat Friedmann–Robertson–Walker (FRW) universe. It is shown that when the background constituent with constant equation of state wm dominates the universe in the early time, the fractional energy density of the dark energy scales as [Formula: see text] with the equation of state given by [Formula: see text]. The value of wm is taken to be wm≃-1 during inflation, wm = ⅓ in radiation-dominated epoch and wm = 0 in matter-dominated epoch, respectively. When the model parameter d takes the normal value at order one, the fractional density of dark energy is naturally negligible in the early universe, Ω de ≪1 at a ≪1. With such an analytic feature, the model can be regarded as a single-parameter model like the ΛCDM model, so that the present fractional energy density Ω de (a = 1) can solely be determined by solving the differential equation of Ωde once d is given. We further extend the model to the general case in which both matter and radiation are present. The scenario involving possible interaction between the dark energy and the background constituent is also discussed.


2010 ◽  
Vol 25 (11n12) ◽  
pp. 909-921 ◽  
Author(s):  
TAOTAO QIU

Quintom models, with its Equation of State being able to cross the cosmological constant boundary w = -1, turns out to be attractive for phenomenological study. It can not only be applicable for dark energy model for current universe, but also lead to a bounce scenario in the early universe.


2012 ◽  
Vol 27 (22) ◽  
pp. 1250130 ◽  
Author(s):  
ZHUO-PENG HUANG ◽  
YUE-LIANG WU

We present a best-fit analysis on the single-parameter holographic dark energy model characterized by the conformal-age-like length, [Formula: see text]. Based on the Union2 compilation of 557 supernova Ia (SNIa) data, the baryon acoustic oscillation (BAO) results from the Sloan Digital Sky Survey data release 7 (SDSS DR7) and the cosmic microwave background radiation (CMB) data from the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), we show that the model gives the minimal [Formula: see text], which is comparable to [Formula: see text] for the ΛCDM model. The single parameter d concerned in the model is found to be d = 0.232±0.006±0.009. Since the fractional density of dark energy Ωde~ d2a2at a ≪ 1, the fraction of dark energy is naturally negligible in the early universe, Ωde≪ 1 at a ≪ 1. The resulting constraints on the present fractional energy density of matter and the equation of state are [Formula: see text] and [Formula: see text] respectively. We also provide a systematic analysis on the cosmic evolutions of the fractional energy density of dark energy, the equation of state of dark energy, the deceleration parameter and the statefinder. It is noticed that the equation of state crosses from wde> -1 to wde< -1, the universe transits from decelerated expansion (q > 0) to accelerated expansion (q < 0) recently, and the statefinder may serve as a sensitive diagnostic to distinguish the CHDE model with the ΛCDM model.


2008 ◽  
Vol 17 (08) ◽  
pp. 1245-1254 ◽  
Author(s):  
WEN ZHAO

We study the statefinder parameters in the Yang–Mills condensate dark energy models, and find that the evolving trajectories of these models are different from those of other dark energy models. We also define two eigenfunctions of the Yang–Mills condensate dark energy models. The values of these eigenfunctions are quite close to zero if the equation of state of the Yang–Mills condensate is not far from -1, which can be used to simply differentiate between the Yang–Mills condensate models and other dark energy models.


2011 ◽  
Vol 50 (9) ◽  
pp. 2687-2696 ◽  
Author(s):  
Saibal Ray ◽  
Farook Rahaman ◽  
Utpal Mukhopadhyay ◽  
Ruby Sarkar

2006 ◽  
Vol 15 (06) ◽  
pp. 869-877 ◽  
Author(s):  
HUI LI ◽  
ZONG-KUAN GUO ◽  
YUAN-ZHONG ZHANG

We investigate a kind of holographic dark energy model with a future event horizon being IR cutoff and the equation of state -1. In this model, the constraint on the equation of state automatically specifies an interaction between matter and dark energy. With this interaction included, an accelerating expansion is obtained as well as the transition from deceleration to acceleration. It is found that there exists a stable tracker solution for the numerical parameter d > 1, and d smaller than one will not lead to a physical solution. This model provides another possible phenomenological framework to alleviate the cosmological coincidence problem in the context of holographic dark energy. Some properties of the evolution which are relevant to cosmological parameters are also discussed.


2007 ◽  
Vol 16 (07) ◽  
pp. 1109-1117 ◽  
Author(s):  
Z. G. HUANG ◽  
H. Q. LU ◽  
W. FANG

In this paper, we regard the dilaton in Weyl-scaled induced gravitational theory as a coupled quintessence. Based on this consideration, we investigate the dilaton coupled quintessence (DCQ) model in the ω - ω′ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to N (the logarithm of the scale factor a). We find the scalar field equation of motion in the ω - ω′ plane, and show mathematically the properties of attractor solutions which correspond to ωσ ~ -1, ωσ = 1. Finally, we find that our model is a tracking one which belongs to "freezing" type models classified in the ω - ω′ plane.


Sign in / Sign up

Export Citation Format

Share Document