MEASUREMENT OF OFF-PLANE STAR ANOMALY IN pd BREAKUP AT Ep = 9.5 MeV AND Ep = 13 MeV

2009 ◽  
Vol 24 (11n13) ◽  
pp. 863-866
Author(s):  
T. SUETA ◽  
S. KUROITA ◽  
H. SHIMODA ◽  
Y. EGUCHI ◽  
K. YASHIMA ◽  
...  

We measured D (p, pp)n cross section at Ep = 9.5 MeV and 13 MeV at off-plane star configurations, including the space star where the star is perpendicular to the beam axis. The experimental results were compared with recent pd breakup calculations using screened Coulomb force, and disagreement was found to smoothly vary with an inclination angle of the off-plane star, α. Further systematic experiments are necessary to investigate the star anomaly.

Author(s):  
Andrzej Wilczek ◽  
Albert Szadziński ◽  
Kazimierz Bodek ◽  
Izabela Ciepał ◽  
Mohammad Eslami-Kalantari ◽  
...  

The~Space Star Anomaly in proton-deuteron breakup cross-section occurs at energies of about 10~MeV. Data for higher energies are sparse. Therefore, a~systematic scan over star configurations in the~range of intermediate energies between 50 and 100 MeV/nucleon is carried out on the~basis of data collected with the~large acceptance BINA detector. The~preliminary cross section results for forward star configurations at 80 MeV/nucleon slightly surpass the~theoretical calculations, but the~systematic uncertainties are still under study. Also, a~new variable describing rotation of star configurations is proposed.


2021 ◽  
Vol 62 (4) ◽  
Author(s):  
A. Wilczek ◽  
A. Szadziński ◽  
N. Kalantar-Nayestanaki ◽  
St. Kistryn ◽  
A. Kozela ◽  
...  

AbstractAnalysis of the data acquired with the BINA detector system in $$^1$$ 1 H(d, pp)n reaction at the beam energy of 80 MeV/nucleon makes a systematic analysis of the star configurations possible. This paper shows the preliminary cross section of the Forward-Plane Star (FPS) configuration with the neighbouring configurations.


1968 ◽  
Vol 46 (10) ◽  
pp. S377-S380 ◽  
Author(s):  
A. A. Petrukhin ◽  
V. V. Shestakov

The cross section for the muon bremsstrahlung process is calculated as a function of the nuclear form factor in the Born approximation following the Bethe and Heitler theory. The influence of the nuclear form factor is greater than that taken by Christy and Kusaka. The simple analytical expression for the effect of the screening of the atomic electrons is found. The influence of a decrease in the cross section upon the interpretation of some experimental results is estimated.


Author(s):  
Onome Scott-Emuakpor ◽  
Tommy George ◽  
Charles Cross ◽  
M.-H. Herman Shen

An energy-based method for predicting fatigue life of half-circle notched specimens, based on the nominal applied stress amplitude, has been developed. This developed method is based on the understanding that the total strain energy dissipated during a monotonic fracture and a cyclic process is the same material property, where the density of each can be determined by measuring the area underneath the monotonic true stress-strain curve and measuring the sum of the area within each Hysteresis loop in the cyclic process, respectively. Using this understanding, the criterion for determining fatigue life prediction of half-circle notched components is constructed by incorporating the stress gradient effect through the notch root cross-section. Though fatigue at a notch root is a local phenomenon, evaluation of the stress gradient through the notch root cross-section is essential for incorporating this method into finite element analysis minimum potential energy process. The validation of this method was carried out by comparison with both notched and unnnotched experimental fatigue life of Aluminum 6061-T6 (Al 6061-T6) specimens under tension/compression loading at the theoretical notch fatigue stress concentration factor of 1.75. The comparison initially showed a slight deviation between prediction and experimental results. This led to the analysis of strain energy density per cycle up to failure, and an improved Hysteresis representation for the energy-based prediction analysis. With the newly developed Hysteresis representation, the energy-based prediction comparison shows encouraging agreement with unnotched experimental results and a theoretical notch stress concentration value.


2009 ◽  
Vol 25 (1) ◽  
pp. 129-136 ◽  
Author(s):  
C.-D. Jan ◽  
C.-J. Chang ◽  
J.-S. Lai ◽  
W.-D. Guo

AbstractThis paper presents the experimental results of the characteristics of hydraulic shock waves in an inclined chute contraction with consideration of the effects of sidewall deflection angle φ, bottom inclination angle θ and approach Froude number Fr0. Seventeen runs of laboratory experiments were conducted in the range of 27.45° ≤φ ≤ 40.17°, 6.22° ≤ θ ≤ 25.38° and 1.04 ≤ Fr0 ≤ 3.51. Based on the experimental data, three empirical dimensionless relations for the shock angle, maximum shockwave height, and corresponding position of maximum shockwave were obtained by regression analyses, respectively. These empirical relations would be useful for hydraulic engineers in designing chute contraction structures.


1969 ◽  
Vol 4 (1) ◽  
pp. 57-64
Author(s):  
R W T Preater

Three different assumptions are made for the behaviour of the junction between the cylindrical shell and the end closure. Comparisons of analytical and experimental results show that the inclusion of a ‘rigid’ annular ring beam at the junction of the cylider and the closure best represents the shell behaviour for a ratio of cylinder mean radius to thickness of 3–7, and enables a prediction of an optimum vessel configuration to be made. Experimental verification of this optimum design confirms the predictions. (The special use of the term ‘rigid’ is taken in this context to refer to a ring beam for which deformations of the cross-section are ignored but rigid body motion is permitted.)


2019 ◽  
Vol 116 (6) ◽  
pp. 607 ◽  
Author(s):  
Rong Cheng ◽  
Jiongming Zhang ◽  
Liangjin Zhang ◽  
Haitao Ma

Unlike traditional rolling processes, reduction of rolling process of rail is along two vertical directions and the broadening of rolled piece is controlled. In this study, industrial experiments and a simulation model of the rolling process of rail were conducted to investigate the behaviors of porosities in billet during the rolling process of rail. The experimental and simulated results revealed that porosities moved toward the center on the cross section of the rolled piece and the porosities region reduced from a rectangle with the size (76.7 × 93.3 mm) to an isosceles trapezoid with the size {(12.8 + 18.5 mm) × 47.2 mm} during the rolling process of rail. The shapes of the porosities changed from circles with the diameters smaller than 6 mm to short cracks with the lengths shorter than 10 mm on the cross section. The two vertical reduction directions and the controlled broadening of rolled piece both counted against the closure of porosity. The simulated results were mostly in agreement with the experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chunyu Fu ◽  
Dawei Tong ◽  
Yuyang Wang

Concrete cracking causes a gradual change in strain distributions along the cross section height of reinforced concrete beams, which will finally affect their instantaneous stiffness. A method for assessing the stiffness is proposed based on the gradual change, which is considered through modeling different strain distributions for key sections in cracked regions. Internal force equilibria are adopted to find a solution to top strains and neutral axes in the models, and then the inertias of the key sections are calculated to assess the beam stiffness. The proposed method has been validated using experimental results obtained from tests on five reinforced concrete beams. The predicted stiffness and displacements are shown to provide a good agreement with experimental data. The instantaneous stiffness is proven to greatly depend on the crack number and depth. This dependence can be exactly reflected by the proposed method through simulating the gradual change in concrete strain distributions.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2199 ◽  
Author(s):  
Beata Zima

The following article presents results of investigating the damage detection in reinforced concrete beams with artificially introduced debonding between the rod and cover, using a non-destructive method based on elastic waves propagation. The primary aim of the research was to analyze the possible use of guided waves in partial circumferential debonding detection. Guided waves were excited and registered in reinforced concrete specimens with varying extents of debonding damage by piezoelectric sensors attached at both ends of the beams. Experimental results in the form of time–domain signals registered for variable extent of debonding were compared, and the relationships relating to the damage size and time of flight and average wave velocity were proposed. The experimental results were compared with theoretical predictions based on dispersion curves traced for the free rod of circular cross-section and rectangular reinforced concrete cross-section. The high agreement of theoretical and experimental data proved that the proposed method, taking advantage of average wave velocity, can be efficiently used for assessing debonding size in reinforced concrete structures. It was shown that the development of damage size in circumferential direction has a completely different impact on wave velocity than development of debonding length. The article contains a continuation of work previously conducted on the detection of delamination in concrete structures. The proposed relationship is the next essential step for developing a diagnostics method for detecting debondings of any size and orientation.


Sign in / Sign up

Export Citation Format

Share Document