HAWKING RADIATION VIA TUNNELING FROM GENERAL STATIC BLACK HOLES

2008 ◽  
Vol 23 (07) ◽  
pp. 539-553 ◽  
Author(s):  
CHENG-ZHOU LIU ◽  
ZHENG ZHAO

Hawking radiation viewed as a semiclassical tunneling process of particles from the event horizon of general static black holes is investigated by taking the back-reaction of the emitted particles into account. In a general static spacetime, the emission rates of massless, massive and massive charged particles are computed respectively and the tunneling probabilities are obtained. Our results show that when energy and charge conservation are incorporated into the radiation process, the emission rate of the tunneling particles is related to changes of the Bekenstein-Hawking entropies of the black hole before and after the emission, thus it is consistent with an underlying unitary theory. The present results are obtained in a general way, no matter what the special static metric function is, and hence a generalization for the results found in the literature is given. Some remarks on the tunneling method are presented.

2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2007 ◽  
Vol 22 (04) ◽  
pp. 777-785 ◽  
Author(s):  
QING-QUAN JIANG ◽  
SHU-ZHENG YANG ◽  
SHUANG-QING WU

Parikh–Wilczek's recent work, which treats the Hawking radiation as semiclassical tunneling process from the event horizon of the static Schwarzschild and Reissner–Nordström black holes, indicates that the factually radiant spectrum deviates from the precisely thermal spectrum after taking the self-gravitation interaction into account. In this paper, we extend Parikh–Wilczek's work to study the Hawking radiation via tunneling from new form of rotating Kerr–Newman–Kasuya solution and obtain a corrected radiation spectrum, which is related to the change of Bekenstein–Hawking entropy, and is not pure thermal, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in this framework, we point out that the information conservation is only suitable for the reversible process.


2010 ◽  
Vol 25 (04) ◽  
pp. 295-308 ◽  
Author(s):  
YA-PENG HU ◽  
JING-YI ZHANG ◽  
ZHENG ZHAO

Since Parikh and Wilczek's tunneling method was proposed, there have been many generalizations, such as its application to massive charged particles' tunneling and other spacetimes. Moreover, an invariant tunneling method was also recently proposed by Angheben et al. that it was independent of coordinates. However, there are some subtleties in the calculation of Hawking radiation, and particularly the so-called factor of 2 problem during the calculation of the Hawking temperature. The most popular opinion on this problem is that it is just a problem of the choice of coordinates. However, following other treatments we show that we can also consider this problem to be that we do not consider the contribution from P(absorption). Moreover, we also clarify some subtleties in the balance method and give some comparisons with other treatments. In addition, as Parikh and Wilczek's original works have showed that if one takes the tunneling particles' back-reaction into account, the Hawking radiation would be modified, and this modification is underlying consistent with the unitary theory, we further find that this modification is also underlying correlated with the laws of black hole thermodynamics. Furthermore, we show that this tunneling method may be valid just when the tunneling process is reversible.


2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2019 ◽  
Vol 59 (1) ◽  
Author(s):  
Gu-Qiang Li ◽  
Yan-Yi Ou ◽  
Ze-Tao Lin

The Hawking radiation of charged particles from black holes in the Hořava–Lifshitz (HL) gravity is investigated by using the Parikh–Wilczek (PW) method, and the emission rate is calculated. The emission spectrum is not purely thermal and is consistent with an underlying unitary theory. Some other characteristics exist for a HL gravity black hole. Assuming the conventional tunnelling rate associated with the change of entropy, the entropy of the HL gravity black hole is obtained. The entropy is not proportional to the horizon area because a logarithmic term exists. However, it complies with the first law of thermodynamics and is in accord with earlier results.


2020 ◽  
Vol 10 (24) ◽  
pp. 8868
Author(s):  
Stefano Liberati ◽  
Giovanni Tricella ◽  
Andrea Trombettoni

We study the back-reaction associated with Hawking evaporation of an acoustic canonical analogue black hole in a Bose–Einstein condensate. We show that the emission of Hawking radiation induces a local back-reaction on the condensate, perturbing it in the near-horizon region, and a global back-reaction in the density distribution of the atoms. We discuss how these results produce useful insights into the process of black hole evaporation and its compatibility with a unitary evolution.


2012 ◽  
Vol 538-541 ◽  
pp. 2169-2174
Author(s):  
Qing Quan Jiang

In this paper, when considering the conservation of energy, electric charge and angular momentum, we develop the Parikh-Wilczek’s quantum tunneling method to study the Hawking radiation of charged particles via tunneling from the event horizon of Kim black hole. The result shows the exact radiation spectrum deviates from the precisely thermal one, but satisfies an underlying unitary theory, which provides a possible solution to the information loss during the black hole evaporation.


2015 ◽  
Vol 30 (02) ◽  
pp. 1550007
Author(s):  
Cheng-Zhou Liu ◽  
Qiao-Jun Cao

Particle tunneling from a quantum corrected black hole in the gravity's rainbow was investigated by the radial trajectory method of the tunneling framework. Using the thermodynamic property of the event horizon, a simpler method for calculating the tunneling probability was shown. In this method, the Painleve coordinate transformation of spacetime and the radial trajectory equation of the tunneling particles used in the previous radial trajectory method was not used. Using the simpler method, the tunneling probability of outgoing particles, regardless of whether they are massless or massive, were calculated in a unified way. The emission rates were related to the changes of the black hole entropies before and after the emission. This implies that the emission spectrum agrees with the underling unitary theory. In addition, the Bekenstein–Hawking area for the modified black hole was established and the emission spectrum with quantum corrections was discussed.


1993 ◽  
Vol 08 (18) ◽  
pp. 1661-1670 ◽  
Author(s):  
MATT VISSER

It has recently become fashionable to regard black holes as elementary particles. By taking this suggestion reasonably seriously it is possible to cobble together an elementary particle physics based on estimate for the decay rate (black hole) i → (black hole) f+ (massless quantum) . This estimate of the spontaneous emission rate contains two free parameters which may be fixed by demanding that the high energy end of the spectrum of emitted quanta match a black body spectrum at the Hawking temperature. The calculation, though technically trivial, has important conceptual implications: (1) The existence of Hawking radiation from black holes seems ultimately dependent only on the fact that massless quanta (and all other forms of matter) couple to gravity. (2) The essentially thermal nature of the Hawking spectrum seems to depend only on the fact that the number of internal states of a large mass black hole is enormous. (3) Remarkably, the resulting formula for the decay rate gives meaningful answers even when extrapolated to low mass black holes. The analysis seems to support the scenario of complete evaporation as the end point of the Hawking radiation process (no naked singularity, no stable massive remnant).


Sign in / Sign up

Export Citation Format

Share Document