scholarly journals THE SIGNATURES OF NEW PHYSICS, ASTROPHYSICS AND COSMOLOGY?

2013 ◽  
Vol 28 (29) ◽  
pp. 1350124 ◽  
Author(s):  
DRAGAN SLAVKOV HAJDUKOVIC

The first three years of the LHC experiments at CERN have ended with "the nightmare scenario": all tests, confirm the Standard Model of Particles so well that theorists must search for new physics without any experimental guidance. The supersymmetric theories, a privileged candidate for new physics, are nearly excluded. As a potential escape from the crisis, we propose thinking about a series of astonishing relations suggesting fundamental interconnections between the quantum world and the large scale Universe. It seems reasonable that, for instance, the equation relating a quark–antiquark pair with the fundamental physical constants and cosmological parameters must be a sign of new physics. One of the intriguing possibilities is interpreting our relations as a signature of the quantum vacuum containing the virtual gravitational dipoles.

Author(s):  
Y. M. Cho

The electroweak monopole in the standard model, the existence, characteristic features, cosmological production and physical implications are discussed. The discovery of the Higgs particle has been thought to be the ‘final’ test of the standard model. If the standard model is correct, however, it must have the electroweak monopole as the electroweak generalization of the Dirac monopole. This means that the detection of this monopole should become the final and topological test of the standard model. If detected, it becomes the first magnetically charged and stable topological elementary particle in the history of physics. Moreover, it has deep implications in physics. In cosmology, it could generate the primordial magnetic black holes which could explain the dark matter, become the seed of the large-scale structures of the universe, and be the source of the intergalactic magnetic field. Just as importantly, it could generate the hitherto unknown magnetic current which could have huge practical applications. Furthermore, the existence of the monopole requires us to reformulate the perturbative expansion in quantum field theory. This makes the detection of the electroweak monopole a most urgent issue. We discuss useful tips for the MoEDAL detector at LHC and similar experiments on how to detect the monopole successfully. This article is part of a discussion meeting issue ‘Topological avatars of new physics’.


1996 ◽  
Vol 168 ◽  
pp. 31-44
Author(s):  
G.F. Smoot

Observations of the Cosmic Microwave Background (CMB) Radiation have put the standard model of cosmology, the Big Bang, on firm footing and provide tests of various ideas of large scale structure formation. CMB observations now let us test the role of gravity and General Relativity in cosmology including the geometry, topology, and dynamics of the Universe. Foreground galactic emissions, dust thermal emission and emission from energetic electrons, provide a serious limit to observations. Nevertheless, observations may determine if the evolution of the Universe can be understood from fundamental physical principles.


2017 ◽  
Vol 32 (29) ◽  
pp. 1730026
Author(s):  
Rebeca Gonzalez Suarez

After the Higgs boson discovery in 2012, the investigation of its properties and compatibility with the Standard Model predictions is central to the physics program of the LHC experiments. Likewise, the study of the top quark is still relevant at the LHC, more than two decades after its discovery at the Tevatron. Top quarks and Higgs bosons are produced at the LHC on a large scale and share a deep connection based on the large mass of the top quark. Both particles provide an excellent laboratory in which to search for new physics: the measurement of their properties tests the foundations of the Standard Model; and they feature prominently in a variety of exotic signals. The coupling of the Higgs boson to the top quark, a fundamental Standard Model parameter, can only be measured directly in processes where the two particles are produced together. The production of a Higgs boson together with one or two top quarks is also sensitive to several exciting new physics effects. A brief overview of the current experimental status of top quark and Higgs boson physics is presented using results from the CMS Collaboration.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


1999 ◽  
Vol 523 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Wolfram Freudling ◽  
Idit Zehavi ◽  
Luiz N. da Costa ◽  
Avishai Dekel ◽  
Amiram Eldar ◽  
...  

2021 ◽  
Vol 502 (3) ◽  
pp. 3942-3954
Author(s):  
D Hung ◽  
B C Lemaux ◽  
R R Gal ◽  
A R Tomczak ◽  
L M Lubin ◽  
...  

ABSTRACT We present a new mass function of galaxy clusters and groups using optical/near-infrared (NIR) wavelength spectroscopic and photometric data from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. At z ∼ 1, cluster mass function studies are rare regardless of wavelength and have never been attempted from an optical/NIR perspective. This work serves as a proof of concept that z ∼ 1 cluster mass functions are achievable without supplemental X-ray or Sunyaev-Zel’dovich data. Measurements of the cluster mass function provide important contraints on cosmological parameters and are complementary to other probes. With ORELSE, a new cluster finding technique based on Voronoi tessellation Monte Carlo (VMC) mapping, and rigorous purity and completeness testing, we have obtained ∼240 galaxy overdensity candidates in the redshift range 0.55 < z < 1.37 at a mass range of 13.6 < log (M/M⊙) < 14.8. This mass range is comparable to existing optical cluster mass function studies for the local universe. Our candidate numbers vary based on the choice of multiple input parameters related to detection and characterization in our cluster finding algorithm, which we incorporated into the mass function analysis through a Monte Carlo scheme. We find cosmological constraints on the matter density, Ωm, and the amplitude of fluctuations, σ8, of $\Omega _{m} = 0.250^{+0.104}_{-0.099}$ and $\sigma _{8} = 1.150^{+0.260}_{-0.163}$. While our Ωm value is close to concordance, our σ8 value is ∼2σ higher because of the inflated observed number densities compared to theoretical mass function models owing to how our survey targeted overdense regions. With Euclid and several other large, unbiased optical surveys on the horizon, VMC mapping will enable optical/NIR cluster cosmology at redshifts much higher than what has been possible before.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Zong-Gang Mou ◽  
Paul M. Saffin ◽  
Anders Tranberg

Abstract We perform large-scale real-time simulations of a bubble wall sweeping through an out-of-equilibrium plasma. The scenario we have in mind is the electroweak phase transition, which may be first order in extensions of the Standard Model, and produce such bubbles. The process may be responsible for baryogenesis and can generate a background of primordial cosmological gravitational waves. We study thermodynamic features of the plasma near the advancing wall, the generation of Chern-Simons number/Higgs winding number and consider the potential for CP-violation at the wall generating a baryon asymmetry. A number of technical details necessary for a proper numerical implementation are developed.


Sign in / Sign up

Export Citation Format

Share Document