scholarly journals Aspects of late-time evolution in mimetic F(R) gravity

2016 ◽  
Vol 31 (33) ◽  
pp. 1650191 ◽  
Author(s):  
V. K. Oikonomou

We demonstrate how to describe in an unified way early and late-time acceleration in the context of mimetic F(R) gravity. As we show, an exponential F(R) gravity model has appealing features, with regard to unification and we perform an analysis of the late-time evolution. The resulting picture is interesting since in the mimetic case, certain pathologies of some ordinary F(R) models are remedied in a consistent way, owing to the presence of the mimetic potential and the Lagrange multiplier. We quantify the late-time evolution analysis by studying the scaled dark energy density, the dark energy equation of state and the total effective equation of state, and as we show the late-time evolution is crucially affected by the functional form of the F(R) gravity. It is intriguing that the most appealing case corresponds to the exponential F(R) gravity which unifies late- and early-time acceleration. Finally, we study the behavior of the effective gravitational constant and the growth factor, and as we show, significant differences between the mimetic and ordinary F(R) exponential model are spotted in the growth factor.

2020 ◽  
Vol 80 (2) ◽  
Author(s):  
Muhsin Aljaf ◽  
Daniele Gregoris ◽  
Martiros Khurshudyan

Abstract In this paper, applying the Hartman–Grobman theorem we carry out a qualitative late-time analysis of some unified dark energy-matter Friedmann cosmological models, where the two interact through linear energy exchanges, and the dark energy fluid obeys to the dynamical equation of state of Redlich–Kwong, Modified Berthelot, and Dieterici respectively. The identification of appropriate late-time attractors allows to restrict the range of validity of the free parameters of the models under investigation. In particular, we prove that the late-time attractors which support a negative deceleration parameter correspond to a de Sitter universe. We show that the strength of deviation from an ideal fluid for the dark energy does not influence the stability of the late-time attractors, as well as the values of all the cosmological parameters at equilibrium, but for the Hubble function (which represents the age of the universe). Our analysis also shows that a singularity in the effective equation of state parameter for the dark energy fluid is not possible within this class of models.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950176
Author(s):  
Swati Sinha ◽  
Surajit Chattopadhyay ◽  
Irina Radinschi

Work reported in this study demonstrates the reconstruction schemes for the [Formula: see text] gravity in the framework of bulk viscosity and holographic background evolution by considering the universe filled by the viscous fluid that is just special class of more general fluids as described in Nojiri and Odintsov [Inhomogeneous equation of state of the universe: Phantom era, future singularity, and crossing the phantom barrier, Phys. Rev. D 72 (2005) 023003]. The bulk viscous pressure has been considered as [Formula: see text], with [Formula: see text]. Considering the scale factor in power law form and taking holographic dark energy (HDE) with density [Formula: see text] and generalized extended holographic dark energy (EGHRDE) with density [Formula: see text], a specific case of Nojiri–Odintsov holographic DE ([Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy, Gen. Relativ. Gravit. 38 (2006) 1285]) we have derived solutions for [Formula: see text] and the subsequent effective equation of state parameters have been found to behave like quintom irrespective of the choice of [Formula: see text]. Finally, considering [Formula: see text] as quintessence scalar field we have explored the possibility of quasi-exponential expansion and warm inflation.


2010 ◽  
Vol 19 (14) ◽  
pp. 2325-2330
Author(s):  
SOURISH DUTTA ◽  
ROBERT J. SCHERRER ◽  
STEPHEN D. H. HSU

We propose a class of simple dark energy models which predict a late-time dark radiation component and a distinctive time-dependent equation of state w(z) for redshift z < 3. The dark energy field can be coupled strongly enough to standard model particles to be detected in colliders, and the model requires only modest additional particle content and little or no fine-tuning other than a new energy scale of order milli-electron volts.


Author(s):  
Allison E. Fetz ◽  
Shannon E. Wallace ◽  
Gary L. Bowlin

The implantation of a biomaterial quickly initiates a tissue repair program initially characterized by a neutrophil influx. During the acute inflammatory response, neutrophils release neutrophil extracellular traps (NETs) and secrete soluble signals to modulate the tissue environment. In this work, we evaluated chloroquine diphosphate, an antimalarial with immunomodulatory and antithrombotic effects, as an electrospun biomaterial additive to regulate neutrophil-mediated inflammation. Electrospinning of polydioxanone was optimized for rapid chloroquine elution within 1 h, and acute neutrophil-biomaterial interactions were evaluated in vitro with fresh human peripheral blood neutrophils at 3 and 6 h before quantifying the release of NETs and secretion of inflammatory and regenerative factors. Our results indicate that chloroquine suppresses NET release in a biomaterial surface area–dependent manner at the early time point, whereas it modulates signal secretion at both early and late time points. More specifically, chloroquine elution down-regulates interleukin 8 (IL-8) and matrix metalloproteinase nine secretion while up-regulating hepatocyte growth factor, vascular endothelial growth factor A, and IL-22 secretion, suggesting a potential shift toward a resolving neutrophil phenotype. Our novel repurposing of chloroquine as a biomaterial additive may therefore have synergistic, immunomodulatory effects that are advantageous for biomaterial-guided in situ tissue regeneration applications.


Author(s):  
I. Brevik ◽  
A. V. Timoshkin

We explore the cosmological models of the late-time universe based on the holographic principle, taking into account the properties of the viscosity of the dark fluid. We use the mathematical formalism of generalized infrared cutoff holographic dark energy, as presented by Nojiri and Odintsov [Covariant generalized holographic dark energy and accelerating universe, Eur. Phys. J. C 77 (2017) 528]. We consider the Little Rip, the Pseudo Rip, and a bounce exponential model, with two interacting fluids, namely dark energy and dark matter in a spatially-flat Friedmann–Robertson–Walker universe. Within these models, analytical expressions are obtained for infrared cutoffs in terms of the particle horizons. The law of conservation of energy is presented, from a holographic point of view.


2006 ◽  
Vol 21 (21) ◽  
pp. 1683-1689 ◽  
Author(s):  
HUI LI ◽  
ZONG-KUAN GUO ◽  
YUAN-ZHONG ZHANG

We construct the non-canonical kinetic term of a k-essence field directly from the effective equation of state function wk(z), which describes the properties of the dark energy. Adopting the usual parametrizations of equation of state, we numerically reproduce the shape of the non-canonical kinetic term and discuss some features of the constructed form of k-essence.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050056
Author(s):  
Sunil Kumar Tripathy ◽  
Subingya Pandey ◽  
Alaka Priyadarsini Sendha ◽  
Dipanjali Behera

A bouncing scenario is studied in the framework of generalized Brans–Dicke theory. In order to have a dark energy (DE) driven late time cosmic acceleration, we have considered a unified dark fluid simulated by a linear equation of state (EoS). The evolutionary behavior of the DE equation of parameter derived from the unified dark fluid has been discussed. The effect of the bouncing scale factor on the Brans–Dicke parameter, self-interacting potential and the Brans–Dicke scalar field is investigated.


2010 ◽  
Vol 19 (03) ◽  
pp. 305-316 ◽  
Author(s):  
AHMAD SHEYKHI

We consider the agegraphic models of dark energy in a braneworld scenario with brane–bulk energy exchange. We assume that the adiabatic equation for the dark matter is satisfied while it is violated for the agegraphic dark energy due to the energy exchange between the brane and the bulk. Our study shows that with the brane–bulk interaction, the equation of state parameter of agegraphic dark energy on the brane, wD, can have a transition from the normal state, where wD > -1, to the phantom regime, where wD < -1, while the effective equation of state for dark energy always satisfies [Formula: see text].


2015 ◽  
Vol 12 (10) ◽  
pp. 1550119 ◽  
Author(s):  
S. Davood Sadatian

We obtain interacting holographic dark energy density in the framework of vector field cosmology (LIV). We consider possible modification of equation of state for the holographic energy density in lorentz invariance violation cosmology. In this case we select Jeans length as the IR cut-off in the holographic model. Then we consider the interaction between holographic energy densities ρΛ and ρm in this framework.


2010 ◽  
Vol 19 (14) ◽  
pp. 2259-2264 ◽  
Author(s):  
MARTIN S. SLOTH

In an effective field theory model with an ultraviolet momentum cutoff, there is a relation between the effective equation-of-state of dark energy and the ultraviolet cutoff scale. It implies that a measure of the equation of state of dark energy different from minus one, ω ≠ -1, does not rule out vacuum energy as dark energy. It also indicates an interesting possibility that precise measurements of the infrared properties of dark energy can be used to probe the ultraviolet cutoff scale of effective quantum field theory coupled to gravity. In a toy model with a vacuum energy-dominated universe with a Planck scale cutoff, the dark energy effective equation of state is w eff ≈ -0.96.


Sign in / Sign up

Export Citation Format

Share Document