Klein–Gordon oscillator in the presence of the minimal momentum

2019 ◽  
Vol 34 (25) ◽  
pp. 1950204 ◽  
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi ◽  
Nasrin Farahani

In this paper, we use the higher-dimensional extended uncertainty principle to discuss the two-dimensional Klein–Gordon oscillator in the absence of the magnetic field and in the presence of the magnetic field. We find the energy levels with the extended uncertainty principle correction for two cases.

2017 ◽  
Vol 14 (10) ◽  
pp. 1750141 ◽  
Author(s):  
Slimane Zaim ◽  
Hakim Guelmamene ◽  
Yazid Delenda

We obtain exact solutions to the two-dimensional (2D) Klein–Gordon oscillator in a non-commutative (NC) complex phase space to first order in the non-commutativity parameter. We derive the exact NC energy levels and show that the energy levels split to [Formula: see text] levels. We find that the non-commutativity plays the role of a magnetic field interacting automatically with the spin of a particle induced by the non-commutativity of complex phase space. The effect of the non-commutativity parameter on the thermal properties is discussed. It is found that the dependence of the heat capacity [Formula: see text] on the NC parameter gives rise to a negative quantity. Phenomenologically, this effectively confirms the presence of the effects of self-gravitation induced by the non-commutativity of complex phase space.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350064 ◽  
Author(s):  
CATARINA BASTOS ◽  
ORFEU BERTOLAMI ◽  
NUNO COSTA DIAS ◽  
JOÃO NUNO PRATA

We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene and we obtain a bound for the momentum noncommutative parameter.


2006 ◽  
Vol 15 (06) ◽  
pp. 1263-1271 ◽  
Author(s):  
A. SOYLU ◽  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the case with no magnetic field analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for n=2-10 and m=0-1 states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.


Author(s):  
B. Khosropour

In this work, according to the generalized uncertainty principle, we study the Klein–Gordon equation interacting with the electromagnetic field. The generalized Klein–Gordon equation is obtained in the presence of a scalar electric potential and a uniform magnetic field. Furthermore, we find the relation of the generalized energy–momentum in the presence of a scalar electric potential and a uniform magnetic field separately.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


Author(s):  
Jasim Mohmed Jasim Jasim ◽  
Iryna Shvedchykova ◽  
Igor Panasiuk ◽  
Julia Romanchenko ◽  
Inna Melkonova

An approach is proposed to carry out multivariate calculations of the magnetic field distribution in the working gaps of a plate polygradient matrix of an electromagnetic separator, based on a combination of the advantages of two- and three-dimensional computer modeling. Two-dimensional geometric models of computational domains are developed, which differ in the geometric dimensions of the plate matrix elements and working air gaps. To determine the vector magnetic potential at the boundaries of two-dimensional computational domains, a computational 3D experiment is carried out. For this, three variants of the electromagnetic separator are selected, which differ in the size of the working air gaps of the polygradient matrices. For them, three-dimensional computer models are built, the spatial distribution of the magnetic field in the working intervals of the electromagnetic separator matrix and the obtained numerical values of the vector magnetic potential at the boundaries of the computational domains are investigated. The determination of the values of the vector magnetic potential for all other models is carried out by interpolation. The obtained values of the vector magnetic potential are used to set the boundary conditions in a computational 2D experiment. An approach to the choice of a rational version of a lamellar matrix is substantiated, which provides a solution to the problem according to the criterion of the effective area of the working area. Using the method of simple enumeration, a variant of the structure of a polygradient matrix with rational geometric parameters is selected. The productivity of the electromagnetic separator with rational geometric parameters of the matrix increased by 3–5 % with the same efficiency of extraction of ferromagnetic inclusions in comparison with the basic version of the device


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 467
Author(s):  
Fayçal Hammad ◽  
Alexandre Landry ◽  
Parvaneh Sadeghi

The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic field, the radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our results to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense, is discussed.


2021 ◽  
pp. 46-55
Author(s):  
А.В. Никитин ◽  
А.В. Михайлов ◽  
А.С. Петров ◽  
С.Э. Попов

A technique for determining the depth and opening of a surface two-dimensional defect in a ferromagnet is presented, that is resistant to input data errors. Defects and magnetic transducers are located on opposite sides of the metal plate. The nonlinear properties of the ferromagnet are taken into account. The components of the magnetic field in the metal were reconstructed from the measured components of the magnetic field above the defect-free surface of the metal. As a result of numerical experiments, the limits of applicability of the method were obtained. The results of the technique have been verified experimentally.


Sign in / Sign up

Export Citation Format

Share Document