scholarly journals Scattering of quantum fields by a MOG black hole

2020 ◽  
Vol 35 (15) ◽  
pp. 2050121
Author(s):  
Ciprian A. Sporea

This paper aims to investigate the scattering of fermions by spherically symmetric MOG black holes, which are a type of black holes encountered in scalar–tensor–vector modified gravitational theories. After determining the scattering modes in this black hole geometry, we apply the partial wave method to compute analytical expressions for the phase shifts that enter into the definition of scattering amplitudes. An analysis of the influence of the MOG parameter [Formula: see text] on the differential scattering cross-section and the induced polarization is conducted. Also, a comparison with Schwarzschild scattering (for which [Formula: see text]) is performed. Furthermore, it is also shown that glory and spiral/orbiting scattering are more significant for higher values of the free parameter [Formula: see text].

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Author(s):  
Charles D. Bailyn

This chapter explores the ways that accretion onto a black hole produces energy and radiation. As material falls into a gravitational potential well, energy is transformed from gravitational potential energy into other forms of energy, so that total energy is conserved. Observing such accretion energy is one of the primary ways that astrophysicists pinpoint the locations of potential black holes. The spectrum and intensity of this radiation is governed by the geometry of the gas flow, the mass infall rate, and the mass of the accretor. The simplest flow geometry is that of a stationary object accreting mass equally from all directions. Such spherically symmetric accretion is referred to as Bondi-Hoyle accretion. However, accretion flows onto black holes are not thought to be spherically symmetric—the infall is much more frequently in the form of a flattened disk.


2020 ◽  
pp. 312-336
Author(s):  
Piotr T. Chruściel

In this chapter we review what is known about dynamical black hole-solutions of Einstein equations. We discuss the Robinson–Trautman black holes, with or without a cosmological constant. We review the Cauchy-data approach to the construction of black-hole spacetimes. We propose some alternative approaches to a meaningful definition of black hole in a dynamical spacetime, and we review the nonlinear stability results for black-hole solutions of vacuum Einstein equations.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050163 ◽  
Author(s):  
Ali Övgün ◽  
İzzet Sakallı ◽  
Joel Saavedra ◽  
Carlos Leiva

We study the shadow and energy emission rate of a spherically symmetric noncommutative black hole in Rastall gravity. Depending on the model parameters, the noncommutative black hole can reduce to the Schwarzschild black hole. Since the nonvanishing noncommutative parameter affects the formation of event horizon, the visibility of the resulting shadow depends on the noncommutative parameter in Rastall gravity. The obtained sectional shadows respect the unstable circular orbit condition, which is crucial for physical validity of the black hole image model.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Benrong Mu ◽  
Peng Wang ◽  
Haitang Yang

We investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole’s mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050048
Author(s):  
Xin-Yang Wang ◽  
Yi-Ru Wang ◽  
Wen-Biao Liu

Based on the definition of the interior volume of spherically symmetry black holes, the interior volume of Schwarzschild–(Anti) de Sitter black holes is calculated. It is shown that with the cosmological constant ([Formula: see text]) increasing, the changing behaviors of both the position of the largest hypersurface and the interior volume for the Schwarzschild–Anti de Sitter black hole are the same as the Schwarzschild–de Sitter black hole. Considering a scalar field in the interior volume and Hawking radiation with only energy, the evolution relation between the scalar field entropy and Bekenstein–Hawking entropy is constructed. The results show that the scalar field entropy is approximately proportional to Bekenstein–Hawking entropy during Hawking radiation. Meanwhile, the proportionality coefficient is also regarded as a constant approximately with the increasing [Formula: see text]. Furthermore, considering [Formula: see text] as a dynamical variable, the modified Stefan–Boltzmann law is proposed which can be used to describe the variation of both the mass and [Formula: see text] under Hawking radiation. Using this modified law, the evolution relation between the two types of entropy is also constructed. The results show that the coefficient for Schwarzschild–de Sitter black holes is closer to a constant than the one for Schwarzschild–Anti de Sitter black holes during the evaporation process. Moreover, we find that for Hawking radiation carrying only energy, the evolution relation is a special case compared with the situation that the mass and [Formula: see text] are both considered as dynamical variables.


2014 ◽  
Vol 29 (36) ◽  
pp. 1450191 ◽  
Author(s):  
Xiao-Xiong Zeng ◽  
Qiang Li ◽  
Yi-Wen Han

Using exclusively an action variable, we quantize a static, spherically symmetric black hole. The spacings of the quantized entropy spectrum and area spectrum are found to be equal to the values given by Bekenstein. Interestingly, we find the spectra are independent of the hairs of the black holes and the mode of motion of a particle outside the spacetime, which depends only on the intrinsic properties of the gravity. Our result shows that the spectra are universal provided the spacetime owns a horizon.


2008 ◽  
Vol 23 (40) ◽  
pp. 3377-3392 ◽  
Author(s):  
JERZY MATYJASEK ◽  
DARIUSZ TRYNIECKI ◽  
MARIUSZ KLIMEK

A regular solution of the system of coupled equations of the nonlinear electrodynamics and gravity describing static and spherically-symmetric black holes in an asymptotically de Sitter universe is constructed and analyzed. Special emphasis is put on the degenerate configurations (when at least two horizons coincide) and their near horizon geometry. It is explicitly demonstrated that approximating the metric potentials in the region between the horizons by simple functions and making use of a limiting procedure one obtains the solutions constructed from maximally symmetric subspaces with different absolute values of radii. Topologically they are AdS2×S2 for the cold black hole, dS2×S2 when the event and cosmological horizon coincide, and the Plebański–Hacyan solution for the ultraextremal black hole. A physically interesting solution describing the lukewarm black holes is briefly analyzed.


Sign in / Sign up

Export Citation Format

Share Document