Tsallis holographic dark energy models in axially symmetric space time

2020 ◽  
Vol 17 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Vipin Chandra Dubey ◽  
Ambuj Kumar Mishra ◽  
Shikha Srivastava ◽  
Umesh Kumar Sharma

In this work, we have examined the behavior of Bianchi-I (axially symmetric) matter-dominated and the anisotropic Universe with the proposed dark energy, Tsallis holographic dark energy (THDE), with the Hubble horizon as infrared cut-off [Tavayef et al., Tsallis holographic dark energy, Phys. Lett. B 781 (2018) 195–200]. The Universe evolution from matter-dominated epoch to dark energy dominated epoch is described by our proposed THDE model. The EoS parameter in our THDE model explains the evolution of the Universe according to the value of nonextensive or Tsallis parameter [Formula: see text], phantom era ([Formula: see text]) or quintom (phantom line crossing) and the quintessence era ([Formula: see text]), before reaching to completely dark energy-dominated era in the future. Additionally, we also plan to reconcile the dark energy by the method of reconstructing the evolution of the scalar field potential. For the analysis, we take into account the quintessence field and phantom scalar field for this reconstruction, which at present shows the accelerated expansion.

Author(s):  
Umesh Kumar Sharma

In the present work, we construct the Tsallis holographic quintessence model of dark energy in [Formula: see text] gravity with Hubble horizon as infrared (IR) cut-off. In a flat Friedmann–Robertson–Walker (FRW) background, the correspondence among the energy density of the quintessence model with the Tsallis holographic density permits the reconstruction of the dynamics and the potentials for the quintessence field. The suggested Hubble horizon IR cut-off for the Tsallis holographic dark energy (THDE) density acts for two specific cases: (i) THDE 1 and (ii) THDE 2. We have reconstructed the Tsallis holographic quintessence model in the region [Formula: see text] for the equation of state (EoS) parameter for both the cases. we investigate the behavior of several well-known statefinder quantities, like the deceleration parameter, the jerk and the parameter [Formula: see text]. In addition, the quintessence phase of the THDE models is analyzed with swampland conjecture to describe the accelerated expansion of the Universe.


2020 ◽  
Vol 18 (01) ◽  
pp. 2150002
Author(s):  
Vipin Chandra Dubey ◽  
Umesh Kumar Sharma ◽  
Anirudh Pradhan

In this work, we explore the accelerated expansion of the conharmonically flat space in relation to an isotropic and spatially homogeneous Friedmann–Robertson–Walker (FRW) universe through a newly proposed dark energy (DE) model namely Sharma–Mittal holographic DE (SMHDE) by taking Hubble horizon as an IR cut-off and also by considering the deceleration parameter as a linear function of Hubble parameter as [Formula: see text], where [Formula: see text] and [Formula: see text] are arbitrary constants. The analysis of different cosmological parameters, equation of state (EoS) parameter, squared speed of sound, statefinder, [Formula: see text] pair, and quintessence field model has been calculated and discussed in detail. Analyzing the behavior of such cosmological parameters graphically, it is found that the SMHDE model can lead to the accelerated expansion of the universe at present epoch. We have also reconciled the DE with scalar field potential. For this analysis, we take into account the quintessence field for this reconstruction.


2021 ◽  
Vol 36 (08) ◽  
pp. 2150054
Author(s):  
K. Dasu Naidu ◽  
Y. Aditya ◽  
R. L. Naidu ◽  
D. R. K. Reddy

In this paper, our purpose is to discuss the dynamical aspects of Kaluza–Klein five-dimensional cosmological model filled with minimally interacting baryonic matter and dark energy (DE) in the presence of an attractive massive scalar field. We obtain a determinate solution of the Einstein field equations using (i) a relation between the metric potentials and (ii) a power law relation between the average scale factor of the universe and the massive scalar field. We have determined scalar field, matter energy density, DE density, equation of state (EoS) [Formula: see text], deceleration [Formula: see text] and statefinder [Formula: see text] parameters of our model. We also develop [Formula: see text]–[Formula: see text] phase, squared sound speed, statefinders and [Formula: see text]–[Formula: see text] planes in the evolving universe. It is observed that the EoS parameter exhibits quintom-like behavior from quintessence to phantom epoch by crossing the vacuum era of the universe. The squared speed of sound represents the instability of the model, whereas the [Formula: see text]–[Formula: see text] plane shows both thawing and freezing regions. The [Formula: see text]CDM limit is attained in both [Formula: see text]–[Formula: see text] and statefinder planes. We have also discussed the cosmological importance of the above parameters with reference to modern cosmology. It is found that the dynamics of these cosmological parameters indicate the accelerated expansion of the universe which is consistent with the current cosmological observations.


2002 ◽  
Vol 11 (09) ◽  
pp. 1389-1397 ◽  
Author(s):  
M. K. MAK ◽  
T. HARKO

A cosmological model with perfect fluid and self-interacting quintessence field is considered in the framework of the spatially flat Friedmann–Robertson–Walker (FRW) geometry. By assuming that all physical quantities depend on the volume scale factor of the Universe, the general solution of the gravitational field equations can be expressed in an exact parametric form, with the volume taken as the parameter, and with the quintessence field as a free parameter. With an appropriate choice of the scalar field a class of exact parametric solutions is obtained, with an exponential type scalar field potential fixed via the gravitational field equations. The general physical behavior of the model is consistent with the recent cosmological scenario favored by supernova type Ia observations, indicating an accelerated expansion of the Universe.


2020 ◽  
Vol 17 (11) ◽  
pp. 2050144 ◽  
Author(s):  
Vandna Srivastava ◽  
Umesh Kumar Sharma

In this work, we explore the Tsallis holographic dark energy (THDE) model with IR cutoff as Granda–Oliveros horizon describing the Universe experiencing an accelerating expansion phase in the framework of flat Friedmann–Lemaître–Robertson–Walker (FLRW) Universe. The Universe evolution from earlier decelerated to the current accelerated phase is exhibited by the deceleration parameter acquired in the THDE model. By the value of the Tsallis parameter [Formula: see text], the equation of state (EoS) parameter for the THDE model represents the rich behavior of the Cosmos as, the quintessence era ([Formula: see text]), crossing the phantom divide line and phantom era ([Formula: see text]). The squared sound speed [Formula: see text] also suggests that the THDE model is classically stable at present. Also, the correspondence with the quintessence and phantom scalar field for the THDE model is analyzed to describe the accelerated expansion of the Universe.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750049 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Ines G. Salako ◽  
Faiza Gulshan

We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter ([Formula: see text]CDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter ([Formula: see text]) corresponds to the quintessence region and phantom region for different cases of [Formula: see text]. Further, we can see that [Formula: see text]–[Formula: see text] (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to [Formula: see text] limit for some cases of [Formula: see text] (PDE parameter). It is also noted that the [Formula: see text]–[Formula: see text] (state-finder parameters) plane corresponds to [Formula: see text] limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.


2010 ◽  
Vol 25 (24) ◽  
pp. 4691-4701 ◽  
Author(s):  
SHUVENDU CHAKRABORTY ◽  
UJJAL DEBNATH

In this work, we consider the Universe is being filled with matter composed of a chameleon-type dark energy scalar field. Employing a particular form of potential, we discuss the field's role in the accelerating phase of the Universe for an anisotropic model using the logamediate and intermediate forms of scale factors. The natures of statefinder and slow-roll parameters are discussed diagrammatically.


2010 ◽  
Vol 19 (05) ◽  
pp. 573-586 ◽  
Author(s):  
ALBERTO ROZAS-FERNÁNDEZ ◽  
DAVID BRIZUELA ◽  
NORMAN CRUZ

We propose a holographic tachyon model of dark energy with interaction between the components of the dark sector. The correspondence between the tachyon field and the holographic dark energy densities allows the reconstruction of the potential and the dynamics of the tachyon scalar field in a flat Friedmann–Robertson–Walker universe. We show that this model can describe the observed accelerated expansion of our universe with a parameter space given by the most recent observational results.


2009 ◽  
Vol 24 (22) ◽  
pp. 1785-1792 ◽  
Author(s):  
B. NAYAK ◽  
L. P. SINGH

The present-day accelerated expansion of the universe is naturally addressed within the Brans–Dicke theory just by using holographic dark energy model with inverse of Hubble scale as IR cutoff and power law temporal behavior of scale factor. It is also concluded that if the universe continues to expand, then one day it might be completely filled with dark energy.


Sign in / Sign up

Export Citation Format

Share Document