scholarly journals WAVE PROPAGATION IN STRINGY BLACK HOLE

1993 ◽  
Vol 08 (18) ◽  
pp. 1701-1718 ◽  
Author(s):  
AVINASH DHAR ◽  
GAUTAM MANDAL ◽  
SPENTA R. WADIA

We further study the non-perturbative formulation of two-dimensional black holes. We find a nonlinear differential equation satisfied by the tachyon in the black hole background. We show that singularities in the tachyon field configurations are always associated with divergent semiclassical expansions and are absent in the exact theory. We also discuss how the Euclidean black hole emerges from an analytically continued fermion theory that corresponds to the right side up harmonic oscillator potential.

1993 ◽  
Vol 08 (01) ◽  
pp. 69-78 ◽  
Author(s):  
SUMIT R. DAS

We show that an integral transform of the fluctuations of the collective field of the d=1 matrix model satisfy the same linearized equation as that of the massless “tachyon” in the black hole background of the two-dimensional critical string. This suggests that the d=1 matrix model may provide a non-perturbative description of black holes in two-dimensional string theory.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


2007 ◽  
Vol 16 (07) ◽  
pp. 1211-1218 ◽  
Author(s):  
PING XI ◽  
XIN-ZHOU LI

In this paper, we investigate the evolution of classical wave propagation in the canonical acoustic black hole by a numerical method and discuss the details of the tail phenomenon. The oscillating frequency and damping time scale both increase with the angular momentum l. For lower l, numerical results show the lowest WKB approximation gives the most reliable result. We also find that the time scale of the interim region from ringing to tail is not affected obviously by changing l.


2000 ◽  
Vol 78 (1) ◽  
pp. 9-19 ◽  
Author(s):  
M K Srivastava ◽  
R K Bhaduri ◽  
J Law ◽  
M.V.N. Murthy

We consider N fermions in a two-dimensional harmonic oscillator potential interacting with a very short-range repulsive pair-wise potential. The ground-state energy of this system is obtained by performing a Thomas-Fermi as well as a self-consistent Hartree-Fock calculation. The two results are shown to agree even for a small number of particles. We next use the finite-temperature Thomas-Fermi method to demonstrate that in the local density approximation, these interacting fermions are equivalent to a system of noninteracting particles obeying the Haldane-Wu fractional exclusion statistics. It is also shown that mapping onto a system of N noninteracting quasiparticles enables us to predict the energies of the ground and excited states of the N-body system. PACS Nos.: 05.30-d, 73.20Dx


1993 ◽  
Vol 08 (20) ◽  
pp. 1925-1941
Author(s):  
ULF H. DANIELSSON

In this work the quantum theory of two-dimensional dilaton black holes is studied using the Wheeler-De Witt equation. The solutions correspond to wave functions of the black hole. It is found that for an observer inside the horizon, there are uncertainty relations for the black hole mass and a parameter in the metric determining the Hawking flux. Only for a particular value of this parameter can both be known with arbitrary accuracy. In the generic case there is instead a relation that is very similar to the so-called string uncertainty relation.


2004 ◽  
Vol 19 (03) ◽  
pp. 239-252 ◽  
Author(s):  
LI-HUI XUE ◽  
ZAI-XIONG SHEN ◽  
BIN WANG ◽  
RU-KENG SU

We study the massless scalar wave propagation in the time-dependent Schwarzschild black hole background. We find that the Kruskal coordinate is an appropriate framework to investigate the time-dependent spacetime. A time-dependent scattering potential is derived by considering dynamical black hole with parameters changing with time. It is shown that in the quasinormal ringing both the decay time-scale and oscillation are modified in the time-dependent background.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342012 ◽  
Author(s):  
BIN CHEN ◽  
JIA-JU ZHANG

The area law of Bekenstein–Hawking entropy of the black hole suggests that the black hole should have a lower-dimensional holographic description. It has been found recently that a large class of rotating and charged black holes could be holographically described a two-dimensional (2D) conformal field theory (CFT). We show that the universal information of the dual CFT, including the central charges and the temperatures, is fully encoded in the thermodynamics laws of both outer and inner horizons. These laws, characterizing how the black hole responds under the perturbation, allows us to read different dual pictures with respect to different kinds of perturbations. The remarkable effectiveness of this thermodynamics method suggest that the inner horizon could play a key role in the study of holographic description of the black hole.


1994 ◽  
Vol 09 (27) ◽  
pp. 4811-4835 ◽  
Author(s):  
TAKANORI FUJIWARA ◽  
YUJI IGARASHI ◽  
JISUKE KUBO

In two-dimensional dilaton gravity theories, there may exist a global Weyl invariance which makes the black hole spurious. If the global invariance and the local Weyl invariance of the matter coupling are intact at the quantum level, there is no Hawking radiation. We explicitly verify the absence of anomalies in these symmetries for the model proposed by Callan, Giddings, Harvey and Strominger. The crucial observation is that the conformal anomaly can be cohomologically trivial and so not truly anomalous in such dilaton gravity models.


2010 ◽  
Vol 25 (21) ◽  
pp. 4123-4140 ◽  
Author(s):  
KOICHIRO UMETSU

We present the derivation of Hawking radiation by using the tunneling mechanism in a rotating and charged black hole background. We show that the four-dimensional Kerr–Newman metric, which has a spherically nonsymmetric geometry, becomes an effectively two-dimensional spherically symmetric metric by using the technique of the dimensional reduction near the horizon. We can thus readily apply the tunneling mechanism to the nonspherical Kerr and Kerr–Newman metric.


Sign in / Sign up

Export Citation Format

Share Document