Interacting fermions in a two-dimensional trap and fractional exclusion statistics

2000 ◽  
Vol 78 (1) ◽  
pp. 9-19 ◽  
Author(s):  
M K Srivastava ◽  
R K Bhaduri ◽  
J Law ◽  
M.V.N. Murthy

We consider N fermions in a two-dimensional harmonic oscillator potential interacting with a very short-range repulsive pair-wise potential. The ground-state energy of this system is obtained by performing a Thomas-Fermi as well as a self-consistent Hartree-Fock calculation. The two results are shown to agree even for a small number of particles. We next use the finite-temperature Thomas-Fermi method to demonstrate that in the local density approximation, these interacting fermions are equivalent to a system of noninteracting particles obeying the Haldane-Wu fractional exclusion statistics. It is also shown that mapping onto a system of N noninteracting quasiparticles enables us to predict the energies of the ground and excited states of the N-body system. PACS Nos.: 05.30-d, 73.20Dx

1992 ◽  
Vol 07 (38) ◽  
pp. 3593-3600
Author(s):  
R. CHITRA

The properties of the ground state of N anyons in an external magnetic field and a harmonic oscillator potential are computed in the large-N limit using the Thomas-Fermi approximation. The number of level crossings in the ground state as a function of the harmonic frequency, the strength and the direction of the magnetic field and N are also studied.


1996 ◽  
Vol 11 (19) ◽  
pp. 1563-1567 ◽  
Author(s):  
BORIS F. SAMSONOV

The supersymmetric quantum mechanical model based on higher-derivative supercharge operators possessing unbroken supersymmetry and discrete energies below the vacuum state energy is described. As an example harmonic oscillator potential is considered.


1993 ◽  
Vol 08 (18) ◽  
pp. 1701-1718 ◽  
Author(s):  
AVINASH DHAR ◽  
GAUTAM MANDAL ◽  
SPENTA R. WADIA

We further study the non-perturbative formulation of two-dimensional black holes. We find a nonlinear differential equation satisfied by the tachyon in the black hole background. We show that singularities in the tachyon field configurations are always associated with divergent semiclassical expansions and are absent in the exact theory. We also discuss how the Euclidean black hole emerges from an analytically continued fermion theory that corresponds to the right side up harmonic oscillator potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdelâali Boudjemâa

AbstractWe study the equilibrium properties of self-bound droplets in two-dimensional Bose mixtures employing the time-dependent Hartree–Fock–Bogoliubov theory. This theory allows one to understand both the many-body and temperature effects beyond the Lee–Huang–Yang description. We calculate higher-order corrections to the excitations, the sound velocity, and the energy of the droplet. Our results for the ground-state energy are compared with the diffusion Monte Carlo data and good agreement is found. The behavior of the depletion and anomalous density of the droplet is also discussed. At finite temperature, we show that the droplet emerges at temperatures well below the Berezinskii–Kosterlitz–Thouless transition temperature. The critical temperature strongly depends on the interspecies interactions. Our study is extended to the finite size droplet by numerically solving the generalized finite-temperature Gross-Pitaevskii equation which is obtained self-consistently from our formalism in the framework of the local density approximation.


1994 ◽  
Vol 08 (06) ◽  
pp. 375-380 ◽  
Author(s):  
PIOTR SITKO

Statistics transmutations to superfermions in fractional quantum Hall effect systems are considered in the Hartree-Fock approximation and in the RPA. The Hartree-Fock ground state energy shows that the transmutations are not energetically preferable. Within the RPA it is found that the system exhibits a fractional quantum Hall effect.


2021 ◽  
Author(s):  
Liangwei Zeng ◽  
Boris A. Malomed ◽  
Dumitru Mihalache ◽  
Yi Cai ◽  
Xiaowei Lu ◽  
...  

Abstract We consider one- and two-dimensional (1D and 2D) optical or matter-wave media with a maximum of the local self-repulsion strength at the center, and a minimum at periphery. If the central area is broad enough, it supports ground states in the form of flat-floor “bubbles”, and topological excitations, in the form of dark solitons in 1D and vortices with winding number m in 2D. The ground and excited states are accurately approximated by the Thomas-Fermi expressions. The 1D and 2D bubbles, as well as vortices with m=1, are completely stable, while the dark solitons and vortices with m=2 have nontrivial stability boundaries in their existence areas. Unstable dark solitons are expelled to the periphery, while unstable double vortices split in rotating pairs of unitary ones. Displaced stable vortices precess around the central point.


2004 ◽  
Vol 19 (28) ◽  
pp. 2147-2153 ◽  
Author(s):  
NAGALAKSHMI A. RAO ◽  
B. A. KAGALI

While the usual harmonic oscillator potential gives discrete energies in the nonrelativistic case, it does not however give genuine bound states in the relativistic case if the potential is treated in the usual way. In the present article, we have obtained the eigenfunctions of the Dirac oscillator in two spatial dimensions, adapting the prescription of Moshinsky.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jiaju Zhang ◽  
M.A. Rajabpour

Abstract We investigate the Rényi entropy of the excited states produced by the current and its derivatives in the two-dimensional free massless non-compact bosonic theory, which is a two-dimensional conformal field theory. We also study the subsystem Schatten distance between these states. The two-dimensional free massless non-compact bosonic theory is the continuum limit of the finite periodic gapless harmonic chains with the local interactions. We identify the excited states produced by current and its derivatives in the massless bosonic theory as the single-particle excited states in the gapless harmonic chain. We calculate analytically the second Rényi entropy and the second Schatten distance in the massless bosonic theory. We then use the wave functions of the excited states and calculate the second Rényi entropy and the second Schatten distance in the gapless limit of the harmonic chain, which match perfectly with the analytical results in the massless bosonic theory. We verify that in the large momentum limit the single-particle state Rényi entropy takes a universal form. We also show that in the limit of large momenta and large momentum difference the subsystem Schatten distance takes a universal form but it is replaced by a new corrected form when the momentum difference is small. Finally we also comment on the mutual Rényi entropy of two disjoint intervals in the excited states of the two-dimensional free non-compact bosonic theory.


Sign in / Sign up

Export Citation Format

Share Document