scholarly journals STRING QUANTIZATION IN CURVED SPACETIMES: NULL STRING APPROACH

1995 ◽  
Vol 10 (32) ◽  
pp. 2479-2484 ◽  
Author(s):  
H.J. DE VEGA ◽  
I. GIANNAKIS ◽  
A. NICOLAIDIS

We study quantum strings in strong gravitational fields. The relevant small parameter is [Formula: see text] where Rc is the curvature of the spacetime and T0 is the string tension. Within our systematic expansion we obtain to zeroth-order the null string (string with zero tension), while the first-order correction incorporates the string dynamics. We apply our formalism to quantum null strings in de Sitter spacetime. After a reparametrization of the worldsheet coordinates, the equations of motion are simplified. The quantum algebra generated by the constraints is considered, ordering the momentum operators to the right of the coordinate operators. No critical dimension appears. It is anticipated, however, that the conformal anomaly will appear when the first-order corrections proportional to T0, are introduced.

1998 ◽  
Vol 13 (39) ◽  
pp. 3169-3177 ◽  
Author(s):  
IOANNIS GIANNAKIS ◽  
K. KLEIDIS ◽  
A. KUIROUKIDIS ◽  
D. PAPADOPOULOS

We study string propagation in an anisotropic, cosmological background. We solve the equations of motion and the constraints by performing a perturbative expansion of the string coordinates in powers if c2 — the worldsheet speed of light. To zeroth order the string is approximated by a tensionless string (since c is proportional to the string tension T). We obtain exact, analytical expressions for the zeroth- and first-order solutions and we discuss some cosmological implications.


2003 ◽  
Vol 18 (18) ◽  
pp. 1257-1264
Author(s):  
JOHN QUIROGA HURTADO

In this paper a quantum [Formula: see text] super-Yang–Mills theory perturbed by dilaton-coupled scalars, is considered. The induced effective action for such a theory is calculated on a dilaton-gravitational background using the conformal anomaly found via AdS/CFT correspondence. Considering such an effective action (using the large N method) as a quantum correction to the classical gravity action with cosmological constant we study the effect from dilaton to the scale factor (which corresponds to the inflationary universe without dilaton). It is shown that, depending on the initial conditions for the dilaton, the dilaton may slow down, or accelerate, the inflation process. At late times, the dilaton is decaying exponentially. At the end of this work, we consider the question how the perturbation of the solution for the scale factor affects the stability of the solution for the equations of motion and therefore the stability of the Inflationary Universe, which could be eternal.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sebastián Céspedes ◽  
Anne-Christine Davis ◽  
Scott Melville

Abstract Developing our understanding of how correlations evolve during inflation is crucial if we are to extract information about the early Universe from our late-time observables. To that end, we revisit the time evolution of scalar field correlators on de Sitter spacetime in the Schrödinger picture. By direct manipulation of the Schrödinger equation, we write down simple “equations of motion” for the coefficients which determine the wavefunction. Rather than specify a particular interaction Hamiltonian, we assume only very basic properties (unitarity, de Sitter invariance and locality) to derive general consequences for the wavefunction’s evolution. In particular, we identify a number of “constants of motion” — properties of the initial state which are conserved by any unitary dynamics — and show how this can be used to partially fix the cubic and quartic wavefunction coefficients at weak coupling. We further constrain the time evolution by deriving constraints from the de Sitter isometries and show that these reduce to the familiar conformal Ward identities at late times. Finally, we show how the evolution of a state from the conformal boundary into the bulk can be described via a number of “transfer functions” which are analytic outside the horizon for any local interaction. These objects exhibit divergences for particular values of the scalar mass, and we show how such divergences can be removed by a renormalisation of the boundary wavefunction — this is equivalent to performing a “Boundary Operator Expansion” which expresses the bulk operators in terms of regulated boundary operators. Altogether, this improved understanding of the wavefunction in the bulk of de Sitter complements recent advances from a purely boundary perspective, and reveals new structure in cosmological correlators.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Rachel A. Rosen ◽  
Luca Santoni

Abstract We provide a systematic and comprehensive derivation of the linearized dynamics of massive and partially massless spin-2 particles in a Schwarzschild (anti) de Sitter black hole background, in four and higher spacetime dimensions. In particular, we show how to obtain the quadratic actions for the propagating modes and recast the resulting equations of motion in a Schrödinger-like form. In the case of partially massless fields in Schwarzschild de Sitter spacetime, we study the isospectrality between modes of different parity. In particular, we prove isospectrality analytically for modes with multipole number L = 1 in four spacetime dimensions, providing the explicit form of the underlying symmetry. We show that isospectrality between partially massless modes of different parity is broken in higher-dimensional Schwarzschild de Sitter spacetimes.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Tran Huu Phat ◽  
Toan T. Nguyen

AbstractExploring the significant impacts of topological charge on the holographic phase transitions and conductivity we start from an Einstein–Maxwell system coupled with a charged scalar field in Anti-de Sitter spacetime. In our set up, the corresponding black hole (BH) is chosen to be the topological AdS one where the pressure is identified with the cosmological constant (Kubiznak and Mann in JHEP 7:33, 2012), then the AdS BH undergoes the phase transition from small to large BHs, which is totally similar to the transition from gas to liquid in the van der Waals theory. Our numerical computation shows that the process of condensation is favored at finite topological charge, in particular, the phase transition from small to large BHs in the bulk generates a mechanism for changing the order of phase transition in the boundary: the second order phase transitions occur at pressures higher than the critical pressure of the phase transition from small to large BHs while they become first order at lower pressures. This property is confirmed with the aid of holographic free energy. Finally, the frequency dependent conductivity exhibits an energy gap when the phase transition is second order and when the phase transition becomes first order this gap is either reduced or totally lost.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Ming Zhang ◽  
Jie Jiang

AbstractIn this work, we first calculate equations of motion for particles in the Kerr-Sen-de Sitter black hole spacetime. Then, in the eikonal regime, we analytically obtain the quasi-normal resonant modes of massless neutral scalar field perturbation and find its imaginary part to be characterized by the surface gravity of a near-extremal Kerr-Sen-de Sitter black hole with the Cauchy horizon approaching the event horizon. We further show that the Penrose strong cosmic censorship conjecture is thus respected in this spacetime with dilaton scalar field and axion pseudoscalar field.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Maxim Emelin

Abstract We study the possibility of realizing scale-separated type IIB Anti-de Sitter and de Sitter compactifications within a controlled effective field theory regime defined by low-energy and large (but scale-separated) compactification volume. The approach we use views effective theories as truncations of the full quantum equations of motion expanded in a trans-series around this asymptotic regime. By studying the scalings of all possible perturbative and non-perturbative corrections we identify the effects that have the right scaling to allow for the desired solutions. In the case of Anti-de Sitter, we find agreement with KKLT-type scenarios, and argue that non-perturbative brane-instantons wrapping four-cycles (or similarly scaling effects) are essentially the only ingredient that allows for scale separated solutions. We also comment on the relation of these results to the AdS swampland conjectures. For the de Sitter case we find that we are forced to introduce an infinite number of relatively unsuppressed corrections to the equations of motion, leading to a breakdown of effective theory. This suggests that if de Sitter vacua exist in the string landscape, they should not be thought of as residing within the same effective theory as the AdS or Minkowski compactifications, but rather as defining a separate asymptotic regime, presumably related to the others by a duality transformation.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.


Sign in / Sign up

Export Citation Format

Share Document