scholarly journals DAMPING AND REACTION RATES AND WAVE FUNCTION RENORMALIZATION OF FERMIONS IN HOT GAUGE THEORIES

2000 ◽  
Vol 15 (19) ◽  
pp. 2953-2969
Author(s):  
ALEJANDRO AYALA ◽  
JUAN CARLOS D'OLIVO ◽  
AXEL WEBER

We examine the relation between the damping rate of a chiral fermion mode propagating in a hot plasma and the rate at which the mode approaches equilibrium. We show how these two quantities, obtained from the imaginary part of the fermion self-energy, are equal when the reaction rate is defined using the appropriate wave function of the mode in the medium. As an application, we compute the production rate of hard axions by Compton-like scattering processes in a hot QED plasma starting from both, the axion self-energy and the electron self-energy. We show that the latter rate coincides with the former only when this is computed using the corresponding medium spinor modes.

2000 ◽  
Vol 15 (07) ◽  
pp. 509-515 ◽  
Author(s):  
ADRIAN GHINCULOV ◽  
YORK-PENG YAO

We give an algorithm for obtaining expansions of massive two-loop Feynman graphs in powers of the external momentum around a finite, nonzero value of the momentum. Such momentum derivatives are encountered while evaluating physical radiative corrections, such as in wave function renormalization constants. This is based on our general two-loop formalism to reduce massive two-loop graphs with renormalizable interactions into a standard set of special functions. After the algebraic reduction, the final results are obtained by numerical integration. We apply the expansion algorithm to treat the top-dependent corrections of [Formula: see text] to the b-quark self-energy and extract its momentum expansion on-shell.


Author(s):  
Alexander P. Parobek ◽  
Patrick M. Chaffin ◽  
Marcy H. Towns

Reaction coordinate diagrams (RCDs) are chemical representations widely employed to visualize the thermodynamic and kinetic parameters associated with reactions. Previous research has demonstrated a host of misconceptions students adopt when interpreting the perceived information encoded in RCDs. This qualitative research study explores how general chemistry students interpret points and trends on a RCD and how these interpretations impact their inferences regarding the rate of a chemical reaction. Sixteen students participated in semi-structured interviews in which participants were asked to interpret the points and trends along provided RCDs and to compare relative reaction rates between RCDs. Findings derived from this study demonstrate the diversity of graphical reasoning adopted by students, the impact of students’ interpretations of the x-axis of a RCD on the graphical reasoning employed, and the influence of these ideas on inferences made about reaction rate. Informed by analytical frameworks grounded in the resources framework and the actor-oriented model of transfer, implications for instruction are provided with suggestions for how RCDs may be presented to assist students in recognizing the critical information encoded in these diagrams.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
S. Shree Devi ◽  
B. Muthukumaran ◽  
P. Krishnamoorthy

Kinetics and mechanism of oxidation of substituted 5-oxoacids by sodium perborate in aqueous acetic acid medium have been studied. The reaction exhibits first order both in [perborate] and [5-oxoacid] and second order in [H+]. Variation in ionic strength has no effect on the reaction rate, while the reaction rates are enhanced on lowering the dielectric constant of the reaction medium. Electron releasing substituents in the aromatic ring accelerate the reaction rate and electron withdrawing substituents retard the reaction. The order of reactivity among the studied 5-oxoacids is p-methoxy ≫ p-methyl > p-phenyl > –H > p-chloro > p-bromo > m-nitro. The oxidation is faster than H2O2 oxidation. The formation of H2BO3+ is the reactive species of perborate in the acid medium. Activation parameters have been evaluated using Arrhenius and Eyring’s plots. A mechanism consistent with the observed kinetic data has been proposed and discussed. Based on the mechanism a suitable rate law is derived.


Author(s):  
Cécile-Aline Gosmain ◽  
Sylvain Rollet ◽  
Damien Schmitt

In the framework of surveillance program dosimetry, the main parameter in the determination of the fracture toughness and the integrity of the reactor pressure vessel (RPV) is the fast neutron fluence on pressure vessel. Its calculated value is extrapolated using neutron transport codes from measured reaction rate value on dosimeters located on the core barrel. EDF R&D has developed a new 3D tool called EFLUVE3D based on the adjoint flux theory. This tool is able to reproduce on a given configuration the neutron flux, fast neutron fluence and reaction rate or dpa results of an exact Monte Carlo calculation with nearly the same accuracy. These EFLUVE3D calculations does the Source*Importance product which allows the calculation of the flux, the neutronic fluence (flux over 1MeV integrated on time) received at any point of the interface between the skin and the pressure vessel but also at the capsules of the pressurized water reactor vessels surveillance program and the dpa and reaction rates at different axial positions and different azimuthal positions of the vessel as well as at the surveillance capsules. Moreover, these calculations can be carried out monthly for each of the 58 reactors of the French current fleet in challenging time (less than 10mn for the total fluence and reaction rates calculations considering 14 different neutron sources of a classical power plant unit compared to more than 2 days for a classic Monte Carlo flux calculation at a given neutron source). The code needs as input: - for each reaction rate, the geometric importance matrix produced for a 3D pin by pin mesh on the basis of Green’s functions calculated by the Monte Carlo code TRIPOLI; - the neutron sources calculated on assemblies data (enrichment, position, fission fraction as a function of evolution), pin by pin power and irradiation. These last terms are based on local in-core activities measurements extrapolated to the whole core by use of the EDF core calculation scheme and a pin by pin power reconstruction methodology. This paper presents the fundamental principles of the code and its validation comparing its results to the direct Monte Carlo TRIPOLI results. Theses comparisons show a discrepancy of less than 0,5% between the two codes equivalent to the order of magnitude of the stochastic convergence of Monte Carlo results.


2018 ◽  
Vol 191 ◽  
pp. 08011
Author(s):  
R.A. Anikin ◽  
M.V. Chistyakov ◽  
D.A. Rumyantsev ◽  
D.M. Shlenev

The process of the photon splitting, γ → γγ, is investigated in strongly magnetized vacuum with taking into account positronium influence. The dispersion properties of photons and the new polarization selection rules are obtained. The absorption rate of the leading photon splitting channels are calculated with taking account of the photon dispersion and wave function renormalization.


Author(s):  
Xi Yang

The interfacial polymerization (IP) of piperazine (PIP) and trimesoyl chloride (TMC) has been extensively utilized to synthesize the nanofiltration (NF) membrane. However, it is still a huge challenge to monitor the IP reaction, because of the fast reaction rate and the formed ultra-thin film. Herein, two effective strategies are applied to reduce the IP reaction rate: (1) the introduction of hydrophilic interlayers between the porous substrate and the formed polyamide layer; (2) the addition of macromolecular additives in the aqueous solution of PIP. As a result, in-situ FT-IR spectroscopy was firstly used to monitor the IP reaction of PIP/TMC reaction system, with hydrophilic interlayers or macromolecular additives. Moreover, we study the formed polyamide layer growth on the substrate, in a real-time manner. The in-situ FT-IR experimental results confirm that the IP reaction rates are effectively suppressed and the formed polyamide thickness reduces from 138±24 nm to 46±2 nm. Furthermore, the optimized NF membrane with excellent performance are consequently obtained, which include the boosted water permeation flux about 141~238 (L·m2·h/MPa) and superior salt rejection of Na2SO4 > 98.4%.


The oxidation of carbon monoxide in equimolar mixtures (CO + O 2 ) has been studied in a well-stirred open system (0.5 dm 3 ) at vessel temperatures in the range 700-840 K, and reactant pressures up to 100 Torr ( ca . 13.3 kPa) at a mean residence time of 8.5 s. Stationary states are established and oscillatory states sustained indefinitely in this system. The effect of small quantities of added hydrogen is studied by a carefully controlled, continuous supplement to the principal reactants. Four different modes of reaction (I-IV) have been characterized, and conditions for their occurrence mapped on a reactant pressure-vessel temperature ( p - T a ) ignition diagram. Most boundaries are quite sharp, and some show evidence of hysteresis. Close to the axes, reaction is slow, non-luminous and non-oscillatory (I). Within a first broad promontory (II) reaction is accompanied by steady luminescence. Crossing the boundary is not accompanied by a step change in reaction rate, but there is a change in character from stable node (in I) to stable focus (in II). Auto-oscillatory luminescence occurs in a closed region (III) wholly within the promontory II. The effects of adding hydrogen on all these modes is to increase the reaction rates markedly and to make them non-isothermal; the boundaries between I, II and III are not as greatly affected. However, systems to which more than 0.10% H 2 have been added also display a new mode, of oscillatory ignition. This appears at first in a region (IV) of high temperatures and pressures but as more H 2 is increased its realm expands and it eventually dominates the ignition diagram, invading the region of luminescence and soon obliterating the oscillatory part completely.


1993 ◽  
Vol 08 (08) ◽  
pp. 739-748
Author(s):  
H. NAKKAGAWA ◽  
A. NIÉGAWA ◽  
B. PIRE

The damping rate of a heavy muon/quark in a hot QED/QCD plasma is calculated in the Landau gauge to the effective one-loop order in the resummed perturbation theory of Braaten and Pisarski. For both a muon/quark at rest and in an energetic case we obtain to leading order the same result as in the Coulomb gauge. Resummation of hard-thermal loop corrections to the photon/gluon propagator is of key importance for this gauge independence.


2021 ◽  
pp. 11-12
Author(s):  
Deepika Jain ◽  
Shilpa Rathor

The present paper describes the kinetics of oxidation of l-Arginine by QDC in the presence of perchloric acid in 30% DMF-H O(v/v) medium at 2 + 40⁰C spectrophotometrically at λ =354nm. The reaction is rst order with respect to [QDC], [H ], and [substrate]. The reaction rate increased with max increasing volume percentage of DMF in reaction mixture. Michaelis- Menten type kinetic was observed with l-Arginine. The reaction rates were studied at different temperature and the activation parameters has been computed. The main product was identied as Cr (III) and 4-Guanidino buteraldehyde.


Sign in / Sign up

Export Citation Format

Share Document