scholarly journals REPRESENTATIONS OF SUPERCONFORMAL ALGEBRAS IN THE AdS7/4/CFT6/3 CORRESPONDENCE

2001 ◽  
Vol 16 (05) ◽  
pp. 976-989 ◽  
Author(s):  
SERGIO FERRARA ◽  
EMERY SOKATCHEV

We perform a general analysis of representations of the superconformal algebras OSp (8/4, ℝ) and OSp (8*/2N) in harmonic superspace. We present a construction of their highest-weight UIR's by multiplication of the different types of massless conformal superfields ("supersingletons"). In particular, all "short multiplets" are classified. Representations undergoing shortening have "protected dimension" and may correspond to BPS states in the dual supergravity theory in anti-de Sitter space. These results are relevant for the classification of multitrace operators in boundary conformally invariant theories as well as for the classification of AdS black holes preserving different fractions of supersymmetry.

2000 ◽  
Vol 14 (22n23) ◽  
pp. 2315-2333 ◽  
Author(s):  
SERGIO FERRARA ◽  
EMERY SOKATCHEV

We carry out a general analysis of the representations of the superconformal algebras OSp(8/4, ℝ) and OSp(8*/2N) in terms of harmonic superspace. We present a construction of their highest-weight UIR's by multiplication of the different types of massless conformal superfields ("supersingletons"). Particular attention is paid to the so-called "short multiplets". Representations undergoing shortening have "protected dimension" and may correspond to BPS states in the dual supergravity theory in anti-de Sitter space. These results are relevant for the classification of multitrace operators in boundary conformally invariant theories as well as for the classification of AdS black holes preserving different fractions of supersymmetry.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1008-1010 ◽  
Author(s):  
ADEL M. AWAD ◽  
CLIFFORD V. JOHNSON

Using the AdS/CFT correspondence, we show that the Anti-de Sitter (AdS) rotating (Kerr) black holes in five and seven dimensions provide us with examples of non-trivial field theories which are scale, but not conformally invariant. This is demonstrated by our computation of the actions and the stress-energy tensors of the four and six dimensional field theories residing on the boundary of the boundary of these Kerr-AdS black holes spacetimes.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Brice Bastian ◽  
Thomas W. Grimm ◽  
Damian van de Heisteeg

Abstract We study the charge-to-mass ratios of BPS states in four-dimensional $$ \mathcal{N} $$ N = 2 supergravities arising from Calabi-Yau threefold compactifications of Type IIB string theory. We present a formula for the asymptotic charge-to-mass ratio valid for all limits in complex structure moduli space. This is achieved by using the sl(2)-structure that emerges in any such limit as described by asymptotic Hodge theory. The asymptotic charge-to-mass formula applies for sl(2)-elementary states that couple to the graviphoton asymptotically. Using this formula, we determine the radii of the ellipsoid that forms the extremality region of electric BPS black holes, which provides us with a general asymptotic bound on the charge-to-mass ratio for these theories. Finally, we comment on how these bounds for the Weak Gravity Conjecture relate to their counterparts in the asymptotic de Sitter Conjecture and Swampland Distance Conjecture.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Adil Belhaj ◽  
Hasan El Moumni ◽  
Karima Masmar

We investigate numerically fR gravity effects on certain AdS/CFT tools including holographic entanglement entropy and two-point correlation functions for a charged single accelerated Anti-de Sitter black hole in four dimensions. We find that both holographic entanglement entropy and two-point correlation functions decrease by increasing the acceleration parameter A, matching perfectly with literature. Taking into account the fR gravity parameter η, the decreasing scheme of the holographic quantities persist. However, we observe a transition-like point where the behavior of the holographic tools changes. Two regions meeting at such a transit-like point are shown up. In such a nomination, the first one is associated with slow accelerating black holes while the second one corresponds to a fast accelerating solution. In the first region, the holographic entanglement entropy and two-point correlation functions decrease by increasing the η parameter. However, the behavioral situation is reversed in the second one. Moreover, a cross-comparison between the entropy and the holographic entanglement entropy is presented, providing another counterexample showing that such two quantities do not exhibit similar behaviors.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Bo Ma ◽  
Li-Chun Zhang ◽  
Jian Liu ◽  
Ren Zhao ◽  
Shuo Cao

In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes) and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time) is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.


2016 ◽  
Vol 94 (10) ◽  
pp. 1045-1053 ◽  
Author(s):  
Ahmad Sheykhi ◽  
Seyed Hossein Hendi ◽  
Fatemeh Naeimipour ◽  
Shahram Panahiyan ◽  
Behzad Eslam Panah

It was shown that with the combination of three Liouville-type dilaton potentials, one can derive dilaton black holes in the background of anti-de-Sitter (AdS) spaces. In this paper, we further extend the study on the dilaton AdS black holes by investigating their thermodynamic instability through a geometry approach. First, we review thermodynamic quantities of the solutions and check the validity of the first law of thermodynamics. Then, we investigate phase transitions and stability of the solutions. In particular, we disclose the effects of the dilaton field on the stability of the black holes. We also employ the geometrical approach toward thermodynamical behavior of the system and find that the divergencies in the Ricci scalar coincide with roots and divergencies in the heat capacity. We find that the behavior of the Ricci scalar around divergence points depends on the type of the phase transition.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Ruihong Yue

We discuss the P−V criticality and phase transition in the extended phase space of anti-de Sitter(AdS) black holes in four-dimensional Rastall theory and recover the Van der Waals (VdW) analogy of small/large black hole (SBH/LBH) phase transition when the parameters ωs and ψ satisfy some certain conditions. Later, we further explore the quasinormal modes (QNMs) of massless scalar perturbations to probe the SBH/LBH phase transition. It is found that it can be detected near the critical point, where the slopes of the QNM frequencies change drastically in small and large black holes.


1999 ◽  
Vol 14 (04) ◽  
pp. 505-520 ◽  
Author(s):  
SHARMANTHIE FERNANDO ◽  
FREYDOON MANSOURI

We study anti-de Sitter black holes in 2 + 1 dimensions in terms of Chern–Simons gauge theory of the anti-de Sitter group coupled to a source. Taking the source to be an anti-de Sitter state specified by its Casimir invariants, we show how all the relevant features of the black hole are accounted for. The requirement that the source be a unitary representation leads to a discrete tower of excited states which provide a microscopic model for the black hole.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Chao Wu ◽  
Rui-Hong Yue

We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. Then, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters Q, Np, and ψ satisfy some certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, quintessence, and cosmological constant fields.


1999 ◽  
Vol 14 (08) ◽  
pp. 1293-1304 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We study the one-loop effective action for N 4D conformally invariant scalars on the spherically symmetric background. The main part of the effective action is given by integration of the 4D conformal anomaly. This effective action (in large N approximation and partial curvature expansion) is applied to investigate the quantum evolution of Schwarzschild–de Sitter (SdS) black holes of maximal mass. We find that the effect (recently discovered by Bousso and Hawking for N minimal scalars and another approximate effective action) of antievaporation of nearly maximal SdS (Nariai) black holes also occurs in the model under consideration. Careful treatment of quantum corrections and perturbations modes of Nariai black holes is given, being quite complicated. It is shown that exists also perturbation where the black hole radius shrinks, i.e. the black hole evaporates. We point out that our result holds for a wide class of models, including conformal scalars, spinors and vectors. Hence, antievaporation of SdS black holes is a rather general effect which should be taken into account in quantum gravity considerations.


Sign in / Sign up

Export Citation Format

Share Document