KAONIC HYDROGEN MEASUREMENT WITH DEAR AT DAΦNE

2005 ◽  
Vol 20 (02n03) ◽  
pp. 341-348 ◽  
Author(s):  
◽  
M. CARGNELLI ◽  
G. BEER ◽  
A. M. BRAGADIREANU ◽  
C. CURCEANU PETRASCU ◽  
...  

The DEAR (DAΦNE Exotic Atom Research) experiment1 measured the energy of X-rays emitted in the transitions to the ground states of kaonic hydrogen. The shift ∊ and the width Γ of the 1s state are sensitive quantities for tests of the current understanding of the low energy antikaon-nucleon interaction. We obtain ∊1s=-193±37 ( stat. )±6 ( syst. ) and Γ1s=249±112 ( stat. )±30 ( syst. ).

2007 ◽  
Vol 85 (5) ◽  
pp. 479-485 ◽  
Author(s):  
M Cargnelli ◽  
T Ishiwatari ◽  
P Kienle ◽  
J Marton ◽  
E Widmann ◽  
...  

At the DAΦNE electron–positron collider of Laboratori Nazionali di Frascati we study kaonic atoms, taking advantage of the low-energy kaons produced in the Φ-meson decay. The low-energy kaon–nucleon interaction in kaonic hydrogen and kaonic deuterium can be investigated under favorable conditions. The DEAR (DAΦNE Exotic Atom Research) experiment at LNF delivered the most precise data on kaonic hydrogen up to now. DEAR and its follow-up experiment SIDDHARTA (Silicon Drift Detector for Hadronic Atom Research by Timing Application) are using X-ray spectroscopy of kaonic hydrogen and kaonic deuterium atoms to measure the strong interaction-induced shift and width of the ground state. From these quantities the isospin-dependent antikaon–nucleon scattering lengths can be determined, quantities useful for testing the understanding of chiral symmetry breaking in the strangeness sector. Within the SIDDHARTA project new X-ray detectors are being developed. We will use an array of large area silicon drift detectors (SDDs) having excellent energy resolution but also providing a timing capability that will result in a huge suppression of background and so overcome the precision limits of the former experiments.PACS Nos.: 36.10.k, 13.75.Jz, 32.30.Rj and 29.40.Wk


2011 ◽  
Vol 26 (03n04) ◽  
pp. 601-603
Author(s):  
◽  
D. L. SIRGHI ◽  
M. BAZZI ◽  
G. BEER ◽  
L. BOMBELLI ◽  
...  

The SIDDHARTA experiment (SIlicon Drift Detector for Hadronic Atom Research by Timing Application) had the aim to perform kaonic atoms X-ray transitions measurements, to better understand aspects of the low-energy QCD in the strangeness sector. The experiment combined the excellent low-energy kaon beam generated at DAΦNE, allowing to use gaseous targets, with excellent fast X-rays detectors: Silicon Drift Detectors. SIDDHARTA was installed on DAΦNE in autumn 2008 and took data till late 2009. Apart of the kaonic hydrogen and kaonic deuterium measurements, we have performed the kaonic helium transitions to the 2p level ( L -lines) measurements: for the first time in a gaseous target for helium4 and for the first time ever for kaonic helium3. The interest for such type of measurement was rather high, being it triggered by two reasons: the so-called "kaonic helium puzzle" (even if this was solved by KEK-PS E570 experiment, but a cross-check was useful) and some theoretical predictions of possible high energy shift (at the level of 10 eV). In this paper the preliminary results for the measurements to the 2p level ( L -series) for kaonic helium4 and kaonic helium3 are presented.


2018 ◽  
Vol 181 ◽  
pp. 01008
Author(s):  
Eliahu Friedman ◽  
Avraham Gal

Six recent SU(3) chiral-model EFT approaches to the K̅-nucleon interaction near threshold, constrained by K− p low-energy scattering and reaction data and by the kaonic hydrogen SIDDHARTA experiment, are used as input in kaonic atom calculations. Good agreement with the world-data on kaonic atoms is achieved with optical potentials built on the above models only when K̅N amplitudes are supplemented by a phenomenological multi-nucleon term. Comparing predictions with experimental single-nucleon absorption-at-rest fractions on nuclei, only two of the models together with their associated phenomenological term are acceptable. The information content of K−-nucleus data near threshold is discussed and the topic of deeply-bound kaonic atoms is re-visited.


2018 ◽  
Vol 181 ◽  
pp. 01006
Author(s):  
Wataru Horiuchi ◽  
Tetsuo Hyodo ◽  
Wolfram Weise

A new evaluation of the 1s level shift and width of kaonic deuterium is presented based on an accurate K̅ NN three-body calculation, using as input a realistic antikaon-nucleon interaction constrained by the SIDDHARTA kaonic hydrogen data. The three-body Schrödinger equation is solved with a superposition of a large number of correlated Gaussian basis functions extending over distance scales up to several hundred fm. The resulting energy shift and width of the kaonic deuterium 1s level are △E ≃ 0:67 keV and Γ ≃ 1.02 keV, with estimated uncertainties at the 10 % level.


2022 ◽  
Vol 258 ◽  
pp. 07006
Author(s):  
Catalina Curceanu ◽  
Marco Miliucci ◽  
Massimiliano Bazzi ◽  
Damir Bosnar ◽  
Mario Bragadireanu ◽  
...  

The X-ray spectroscopy measurements of light kaonic atoms’ deexcitation towards the fundamental level provide unique information on the low-energy Quantum ChromoDynamics (QCD) in the strangeness sector, being a direct probe of the kaon/nucleon interaction at threshold, unobtainable through the scattering experiments. In this framework, the SIDDHARTA-2 collaboration is going to perform the first kaonic deuterium 2p → 1s transition measurement at the DAΦNE collider of Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati. Combining this measurement with the kaonic hydrogen one performed by SIDDHARTA in 2009 it will be possible to obtain, in a model-independent way, the isospin-dependent antikaon-nucleon scattering lengths. The paper introduces the SIDDHARTA-2 setup, an upgraded version with respect to the one used for the kaonic hydrogen measurement, dedicated to the ambitious kaonic deuterium measurement, together with the preliminary results obtained during the kaonic helium run, preparatory for the SIDDHARTA-2 data taking campaign.


Metrologia ◽  
2011 ◽  
Vol 48 (1A) ◽  
pp. 06013-06013 ◽  
Author(s):  
D T Burns ◽  
P Roger ◽  
M Denozière ◽  
E Leroy
Keyword(s):  
X Rays ◽  

2015 ◽  
Vol 2 (1) ◽  
pp. 246-251 ◽  
Author(s):  
K. Mukai

In recent years, recurrent nova eruptions are often observed very intensely in wide range of wavelengths from radio to optical to X-rays. Here I present selected highlights from recent multi-wavelength observations. The enigma of T Pyx is at the heart of this paper. While our current understanding of CV and symbiotic star evolution can explain why certain subset of recurrent novae have high accretion rate, that of T Pyx must be greatly elevated compared to the evolutionary mean. At the same time, we have extensive data to be able to estimate how the nova envelope was ejected in T Pyx, and it turns to be a rather complex tale. One suspects that envelope ejection in recurrent and classical novae in general is more complicated than the textbook descriptions. At the end of the review, I will speculate that these two may be connected.


Sign in / Sign up

Export Citation Format

Share Document