scholarly journals Global QCD Analysis and Hadron Collider Physics

2006 ◽  
Vol 21 (04) ◽  
pp. 620-628
Author(s):  
Wu-Ki Tung

The role of global QCD analysis of parton distribution functions (PDFs) in collider physics at the Tevatron and LHC is surveyed. Current status of PDF analyses are reviewed, emphasizing the uncertainties and the open issues. The stability of NLO QCD global analysis and its prediction on "standard candle" W/Z cross sections at hadron colliders are discussed. The importance of the precise measurement of various W/Z cross sections at the Tevatron in advancing our knowledge of PDFs, hence in enhancing the capabilities of making significant progress in W mass and top quark parameter measurements, as well as the discovery potentials of Higgs and New Physics at the Tevatron and LHC, is emphasized.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. V. Garzelli ◽  
L. Kemmler ◽  
S. Moch ◽  
O. Zenaiev

Abstract We present predictions for heavy-quark production at the Large Hadron Collider making use of the $$ \overline{\mathrm{MS}} $$ MS ¯ and MSR renormalization schemes for the heavy-quark mass as alternatives to the widely used on-shell renormalization scheme. We compute single and double differential distributions including QCD corrections at next-to-leading order and investigate the renormalization and factorization scale dependence as well as the perturbative convergence in these mass renormalization schemes. The implementation is based on publicly available programs, MCFM and xFitter, extending their capabilities. Our results are applied to extract the top-quark mass using measurements of the total and differential $$ t\overline{t} $$ t t ¯ production cross-sections and to investigate constraints on parton distribution functions, especially on the gluon distribution at low x values, from available LHC data on heavy-flavor hadro-production.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Ferran Faura ◽  
Shayan Iranipour ◽  
Emanuele R. Nocera ◽  
Juan Rojo ◽  
Maria Ubiali

AbstractWe present an improved determination of the strange quark and antiquark parton distribution functions of the proton by means of a global QCD analysis that takes into account a comprehensive set of strangeness-sensitive measurements: charm-tagged cross sections for fixed-target neutrino–nucleus deep-inelastic scattering, and cross sections for inclusive gauge-boson production and W-boson production in association with light jets or charm quarks at hadron colliders. Our analysis is accurate to next-to-next-to-leading order in perturbative QCD where available, and specifically includes charm-quark mass corrections to neutrino–nucleus structure functions. We find that a good overall description of the input dataset can be achieved and that a strangeness moderately suppressed in comparison to the rest of the light sea quarks is strongly favored by the global analysis.


2006 ◽  
Vol 21 (02) ◽  
pp. 89-109 ◽  
Author(s):  
S. DAWSON ◽  
C. B. JACKSON ◽  
L. REINA ◽  
D. WACKEROTH

We review the present status of the QCD corrected cross-sections and kinematic distributions for the production of a Higgs boson in association with bottom quarks at the Fermilab Tevatron and CERN Large Hadron Collider. Results are presented for the Minimal Supersymmetric Standard Model where, for large tan β, these production modes can be greatly enhanced compared to the Standard Model case. The next-to-leading order QCD results are much less sensitive to the renormalization and factorization scales than the lowest order results, but have a significant dependence on the choice of the renormalization scheme for the bottom quark Yukawa coupling. We also investigate the uncertainties coming from the Parton Distribution Functions and find that these uncertainties can be comparable to the uncertainties from the remaining scale dependence of the next-to-leading order results. We present results separately for the different final states depending on the number of bottom quarks identified.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Nikolaos Kidonakis ◽  
Nodoka Yamanaka

Abstract We discuss cross sections for tW production in proton-proton collisions at the LHC and at higher-energy colliders with energies of up to 100 TeV. We find that, remarkably, the soft-gluon corrections are numerically dominant even at very high collider energies. We present results with soft-gluon corrections at approximate NNLO and approximate N3LO matched to complete NLO results. These higher-order corrections are large and need to be included for better theoretical accuracy and smaller scale dependence. Total cross sections as well as top-quark and W-boson transverse-momentum and rapidity distributions are presented using various recent sets of parton distribution functions.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Giuseppe Bevilacqua ◽  
Huan-Yu Bi ◽  
Heribertus Bayu Hartanto ◽  
Manfred Kraus ◽  
Michele Lupattelli ◽  
...  

Abstract We report on the calculation of the next-to-leading order QCD corrections to the production of a $$ t\overline{t} $$ t t ¯ pair in association with two heavy-flavour jets. We concentrate on the di-lepton $$ t\overline{t} $$ t t ¯ decay channel at the LHC with $$ \sqrt{s} $$ s = 13 TeV. The computation is based on pp → e+νeμ−$$ \overline{\nu} $$ ν ¯ μ$$ b\overline{b}b\overline{b} $$ b b ¯ b b ¯ matrix elements and includes all resonant and non-resonant diagrams, interferences and off-shell effects of the top quark and the W gauge boson. As it is customary for such studies, results are presented in the form of inclusive and differential fiducial cross sections. We extensively investigate the dependence of our results upon variation of renormalisation and factorisation scales and parton distribution functions in the quest for an accurate estimate of the theoretical uncertainties. We additionally study the impact of the contributions induced by the bottom-quark parton density. Results presented here are particularly relevant for measurements of $$ t\overline{t}H $$ t t ¯ H (H → $$ b\overline{b} $$ b b ¯ ) and the determination of the Higgs coupling to the top quark. In addition, they might be used for precise measurements of the top-quark fiducial cross sections and to investigate top-quark decay modelling at the LHC.


Author(s):  
Sydney Otten ◽  
Krzysztof Rolbiecki ◽  
Sascha Caron ◽  
Jong-Soo Kim ◽  
Roberto Ruiz de Austri ◽  
...  

AbstractWe present a deep learning solution to the prediction of particle production cross sections over a complicated, high-dimensional parameter space. We demonstrate the applicability by providing state-of-the-art predictions for the production of charginos and neutralinos at the Large Hadron Collider (LHC) at the next-to-leading order in the phenomenological MSSM-19 and explicitly demonstrate the performance for $$pp\rightarrow \tilde{\chi }^+_1\tilde{\chi }^-_1,$$pp→χ~1+χ~1-,$$\tilde{\chi }^0_2\tilde{\chi }^0_2$$χ~20χ~20 and $$\tilde{\chi }^0_2\tilde{\chi }^\pm _1$$χ~20χ~1± as a proof of concept which will be extended to all SUSY electroweak pairs. We obtain errors that are lower than the uncertainty from scale and parton distribution functions with mean absolute percentage errors of well below $$0.5\,\%$$0.5% allowing a safe inference at the next-to-leading order with inference times that improve the Monte Carlo integration procedures that have been available so far by a factor of $$\mathscr {O}(10^7)$$O(107) from $$\mathscr {O}(\mathrm{min})$$O(min) to $$\mathscr {O}(\mu \mathrm{s})$$O(μs) per evaluation.


2018 ◽  
Vol 172 ◽  
pp. 02001
Author(s):  
Anterpreet Kaur

We present results on the measurements of characteristics of events with jets including jet-charge, investigations of shapes and jet mass distributions. The measurements are compared to theoretical predictions including those matched to parton shower and hadronization. Multi-differential jet cross sections are also presented over a wide range in transverse momenta from inclusive jets to multi-jet final states. These measurements have an impact on the determination of the strong coupling constant as well as on parton distribution functions (PDFs) and are helpful in the treatment of heavy flavours in QCD analyses. We also show angular correlations in multi-jet events at highest center-of-mass energies and compare the measurements to theoretical predictions including higher order parton radiation and coherence effects. Measurements of cross sections of jet and top-quark pair production are in particular sensitive to the gluon distribution in the proton, while the electroweak boson production - inclusive or associated with charm or beauty quarks - gives insight into the flavour separation of the proton sea and to the treatment of heavy quarks in PDF-related studies.


Production of charm and beauty quark–antiquark pairs in proton–proton collisions is simulated with the codes generated in the framework of MadGraph5_aMC@NLO. The tree–level partonic processes are taken into account in first three orders of the perturbative quantum chromodynamics. The considered hard processes have two, three, and four partons in the final states. These final states contain one or two heavy quark–antiquark pairs. The calculations are performed with parton distribution functions (PDF) obtained with neural network methods by NNPDF collaboration. Influence of the multiple partonic interactions (MPI), initial– and final–state showers on the cross sections (CSs) is studied consistently taking advantage of Pythia 8 event generator. The CSs are computed in central and forward rapidity regions under conditions of the ALICE and LHCb experiments at the Large Hadron Collider at CERN. The studied transverse momentum interval of the heavy quarks spreads up to 30 GeV/c. The CSs calculated at the leading order (LO) with Pythia 8, in the tree approximation with MadGraph5, and within Fixed Order plus Next–to–Leading Logarithms (FONLL) approach agree with each other within bands of the uncertainties inherent to underlying theory and methods. Inclusion of next–to–leading order (NLO) and N2LO partonic processes into calculations in addition to LO ones results in growth of the CSs. This increase reduces to some extent discrepancies with the CSs measured by ALICE and LHCb. Variations of the CSs due to renormalization– and factorization–scale dependence are much larger than the increase of the CSs in NLO and N2LO, than the uncertainties springing in the NNPDF model, and then the accuracy achieved in the ALICE and LHCb cross section measurements. Effects of the MPI, the space– and time–like partonic showers on the heavy quark CSs are found to be not very essential.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Admir Greljo ◽  
Shayan Iranipour ◽  
Zahari Kassabov ◽  
Maeve Madigan ◽  
James Moore ◽  
...  

Abstract The high-energy tails of charged- and neutral-current Drell-Yan processes provide important constraints on the light quark and anti-quark parton distribution functions (PDFs) in the large-x region. At the same time, short-distance new physics effects such as those encoded by the Standard Model Effective Field Theory (SMEFT) would induce smooth distortions to the same high-energy Drell-Yan tails. In this work, we assess for the first time the interplay between PDFs and EFT effects for high-mass Drell-Yan processes at the LHC and quantify the impact that the consistent joint determination of PDFs and Wilson coefficients has on the bounds derived for the latter. We consider two well-motivated new physics scenarios: 1) electroweak oblique corrections ($$ \hat{W},\hat{Y} $$ W ̂ , Y ̂ ) and 2) four-fermion interactions potentially related to the LHCb anomalies in R(K(*)). We account for available Drell-Yan data, both from unfolded cross sections and from searches, and carry out dedicated projections for the High-Luminosity LHC. Our main finding is that, while the interplay between PDFs and EFT effects remains moderate for the current dataset, it will become a significant challenge for EFT analyses at the HL-LHC.


Sign in / Sign up

Export Citation Format

Share Document