scholarly journals Higher-order corrections for tW production at high-energy hadron colliders

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Nikolaos Kidonakis ◽  
Nodoka Yamanaka

Abstract We discuss cross sections for tW production in proton-proton collisions at the LHC and at higher-energy colliders with energies of up to 100 TeV. We find that, remarkably, the soft-gluon corrections are numerically dominant even at very high collider energies. We present results with soft-gluon corrections at approximate NNLO and approximate N3LO matched to complete NLO results. These higher-order corrections are large and need to be included for better theoretical accuracy and smaller scale dependence. Total cross sections as well as top-quark and W-boson transverse-momentum and rapidity distributions are presented using various recent sets of parton distribution functions.

2011 ◽  
Vol 26 (16) ◽  
pp. 2637-2664 ◽  
Author(s):  
WIM BEENAKKER ◽  
SILJA BRENSING ◽  
MICHAEL KRÄMER ◽  
ANNA KULESZA ◽  
ERIC LAENEN ◽  
...  

We review the theoretical status of squark and gluino hadroproduction and provide numerical predictions for all squark and gluino pair-production processes at the Tevatron and at the LHC, with a particular emphasis on proton–proton collisions at 7 TeV. Our predictions include next-to-leading order supersymmetric QCD corrections and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy. We discuss the impact of the higher-order corrections on total cross-sections, and provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rabah Abdul Khalek ◽  
Jacob J. Ethier ◽  
Juan Rojo ◽  
Gijs van Weelden

Abstract We present a model-independent determination of the nuclear parton distribution functions (nPDFs) using machine learning methods and Monte Carlo techniques based on the NNPDF framework. The neutral-current deep-inelastic nuclear structure functions used in our previous analysis, nNNPDF1.0, are complemented by inclusive and charm-tagged cross-sections from charged-current scattering. Furthermore, we include all available measurements of W and Z leptonic rapidity distributions in proton-lead collisions from ATLAS and CMS at $$ \sqrt{s} $$ s = 5.02 TeV and 8.16 TeV. The resulting nPDF determination, nNNPDF2.0, achieves a good description of all datasets. In addition to quantifying the nuclear modifications affecting individual quarks and antiquarks, we examine the implications for strangeness, assess the role that the momentum and valence sum rules play in nPDF extractions, and present predictions for representative phenomenological applications. Our results, made available via the LHAPDF library, highlight the potential of high-energy collider measurements to probe nuclear dynamics in a robust manner.


2020 ◽  
Vol 35 (22) ◽  
pp. 2050127
Author(s):  
M. Broilo ◽  
V. P. Gonçalves ◽  
P. V. R. G. Silva

The impact of the partonic structure on the description of the hadronic cross-sections is investigated considering a multichannel eikonal model based on the Good–Walker approach. The total, elastic and single diffractive cross-sections are estimated considering different parametrizations for the parton distribution functions and the predictions are compared with the experimental data for proton–proton [Formula: see text] and antiproton–proton [Formula: see text] collisions. We show that the description of the high-energy behavior of the hadronic cross-sections is sensitive to the partonic structure.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. V. Garzelli ◽  
L. Kemmler ◽  
S. Moch ◽  
O. Zenaiev

Abstract We present predictions for heavy-quark production at the Large Hadron Collider making use of the $$ \overline{\mathrm{MS}} $$ MS ¯ and MSR renormalization schemes for the heavy-quark mass as alternatives to the widely used on-shell renormalization scheme. We compute single and double differential distributions including QCD corrections at next-to-leading order and investigate the renormalization and factorization scale dependence as well as the perturbative convergence in these mass renormalization schemes. The implementation is based on publicly available programs, MCFM and xFitter, extending their capabilities. Our results are applied to extract the top-quark mass using measurements of the total and differential $$ t\overline{t} $$ t t ¯ production cross-sections and to investigate constraints on parton distribution functions, especially on the gluon distribution at low x values, from available LHC data on heavy-flavor hadro-production.


2009 ◽  
Vol 24 (06) ◽  
pp. 1069-1086 ◽  
Author(s):  
CRISTINEL DIACONU

Recent progress in the understanding of the nucleon is presented. The unpolarized structure functions are obtained with unprecedented precision from the combined H1 and ZEUS data and are used to extract proton parton distribution functions via NLO QCD fits. The obtained parametrization displays an improved precision, in particular at low Bjorken x, and leads to precise predictions of cross-sections for LHC phenomena. Recent data from proton–antiproton collisions at Tevatron indicate further precise constraints at large Bjorken x. The flavor content of the proton is further studied using final states with charm and beauty in DIS ep and [Formula: see text] collisions. Data from polarized DIS or proton–proton collisions are used to test the spin structure of the proton and to constrain the polarized parton distributions.


Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
O. Abdinov ◽  
...  

Abstract This paper presents measurements of the $$W^+ \rightarrow \mu ^+\nu $$W+→μ+ν and $$W^- \rightarrow \mu ^-\nu $$W-→μ-ν cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton–proton collisions at a centre-of-mass energy of 8 $$\text {TeV}$$TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of $$20.2~\text{ fb }^{-1}$$20.2fb-1. The precision of the cross-section measurements varies between 0.8 and 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Giuseppe Bevilacqua ◽  
Huan-Yu Bi ◽  
Heribertus Bayu Hartanto ◽  
Manfred Kraus ◽  
Michele Lupattelli ◽  
...  

Abstract We report on the calculation of the next-to-leading order QCD corrections to the production of a $$ t\overline{t} $$ t t ¯ pair in association with two heavy-flavour jets. We concentrate on the di-lepton $$ t\overline{t} $$ t t ¯ decay channel at the LHC with $$ \sqrt{s} $$ s = 13 TeV. The computation is based on pp → e+νeμ−$$ \overline{\nu} $$ ν ¯ μ$$ b\overline{b}b\overline{b} $$ b b ¯ b b ¯ matrix elements and includes all resonant and non-resonant diagrams, interferences and off-shell effects of the top quark and the W gauge boson. As it is customary for such studies, results are presented in the form of inclusive and differential fiducial cross sections. We extensively investigate the dependence of our results upon variation of renormalisation and factorisation scales and parton distribution functions in the quest for an accurate estimate of the theoretical uncertainties. We additionally study the impact of the contributions induced by the bottom-quark parton density. Results presented here are particularly relevant for measurements of $$ t\overline{t}H $$ t t ¯ H (H → $$ b\overline{b} $$ b b ¯ ) and the determination of the Higgs coupling to the top quark. In addition, they might be used for precise measurements of the top-quark fiducial cross sections and to investigate top-quark decay modelling at the LHC.


Author(s):  
H. Van Haevermaet ◽  
A. Van Hameren ◽  
P. Kotko ◽  
K. Kutak ◽  
P. Van Mechelen

Abstract We study 3-jet event topologies in proton-proton collisions at a centre-of-mass energy of $$\sqrt{s} = 13 \mathrm{\ TeV}$$s=13TeV in a configuration, where one jet is present in the central pseudorapidity region ($$|\eta | < 2.0$$|η|<2.0) while two other jets are in a more forward (same hemisphere) area ($$|\eta | > 2.0$$|η|>2.0). We compare various parton level predictions using: collinear factorisation, $$k_\mathrm{T}$$kT-factorisation with fully off-shell matrix elements and the hybrid framework. We study the influence of different parton distribution functions, initial state radiation, final state radiation, and hadronisation. We focus on differential cross sections as a function of azimuthal angle difference between the leading dijet system and the third jet, which is found to have excellent sensitivity to the physical effects under study.


Sign in / Sign up

Export Citation Format

Share Document