Twisted non-Abelian vortices

2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645046
Author(s):  
Péter Forgács ◽  
Árpád Lukács ◽  
Fidel A. Schaposnik

Twisted non-Abelian flux-tube solutions are considered in the bosonic sector of a 4-dimensional [Formula: see text] super-symmetric gauge theory with U(2)[Formula: see text] symmetry, with two scalar doublets in the fundamental representation. Twist refers to a time-dependent matrix phase between the two doublets, and twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged non-Abelian vortex, satisfying 1st order Bogomolny-type equations and Gauss-type constraints. Quite unexpectedly some twisted strings lack cylindrical symmetry in [Formula: see text].

1991 ◽  
Vol 1 (2) ◽  
pp. 87 ◽  
Author(s):  
JJ Costa ◽  
LA Oliveira ◽  
DX Viegas ◽  
LP Neto

A simple and efficient numerical scheme is presented for the prediction of temperature field distribution inside a tree trunk subjected to ground fire conditions. The trunk is modelled by a cylinder of circular cross section and unit length, through which the time-dependent heat conduction equation is numerically integrated. The model is partly validated in laboratory and then applied to the case of a prescribed ground fire inside a Pinus pinmter stand.


2009 ◽  
Vol 13 (01) ◽  
pp. 114-121 ◽  
Author(s):  
Kazuya Ogawa ◽  
Yasunori Nagatsuka

A new porphyrintetrathiafulvalene composite, where two porphyrins are bridged by te trathiafulvalene (TTF) using acetylene bonds was synthesized. The Q-band of the monomeric porphyrin appears at 590 nm whereas that of the composite is red-shifted to 620 nm and intensified. The Soret band is also red-shifted from 427 nm to 435 nm and much broadened, indicating the expansion of π-conjugation over the porphyrin and tetrathiafulvalene units. The HOMOs and LUMOs were calculated using time-dependent density functional theory. Voltammetric experiments revealed that the first oxidation potential of the TTF moiety in the composite was shifted by +155 mV compa red with TTF in the absence of composite. The effective two-photon absorption (2PA) cross section values were measured by using a nanosecond open aperture Z-scan method. The maximum effective 2PA cross section values were obtained at 760 nm, as 7300 GM in benzonitrile and 5900 GM in toluene. The values obtained in the polar solvent were 1.2 to 1.5 times larger than those in the nonpolar solvent.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Genly Leon ◽  
Sebastián Cuéllar ◽  
Esteban González ◽  
Samuel Lepe ◽  
Claudio Michea ◽  
...  

AbstractScalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic equation of state (EoS) with barotropic index $$\gamma $$ γ for the locally rotationally symmetric (LRS) Bianchi I and flat Friedmann–Lemaître–Robertson–Walker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averaged versions have the same late-time dynamics. Therefore, the simplest time-averaged system determines the future asymptotic behavior. Depending on the values of $$\gamma $$ γ , the late-time attractors of physical interests are flat quintessence dominated FLRW universe and Einstein-de Sitter solution. With this approach, the oscillations entering the system through the Klein–Gordon (KG) equation can be controlled and smoothed out as the Hubble parameter H – acting as time-dependent perturbation parameter – tends monotonically to zero. Numerical simulations are presented as evidence of such behavior.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1342
Author(s):  
Ofir E. Alon

A solvable model of a periodically driven trapped mixture of Bose–Einstein condensates, consisting of N1 interacting bosons of mass m1 driven by a force of amplitude fL,1 and N2 interacting bosons of mass m2 driven by a force of amplitude fL,2, is presented. The model generalizes the harmonic-interaction model for mixtures to the time-dependent domain. The resulting many-particle ground Floquet wavefunction and quasienergy, as well as the time-dependent densities and reduced density matrices, are prescribed explicitly and analyzed at the many-body and mean-field levels of theory for finite systems and at the limit of an infinite number of particles. We prove that the time-dependent densities per particle are given at the limit of an infinite number of particles by their respective mean-field quantities, and that the time-dependent reduced one-particle and two-particle density matrices per particle of the driven mixture are 100% condensed. Interestingly, the quasienergy per particle does not coincide with the mean-field value at this limit, unless the relative center-of-mass coordinate of the two Bose–Einstein condensates is not activated by the driving forces fL,1 and fL,2. As an application, we investigate the imprinting of angular momentum and its fluctuations when steering a Bose–Einstein condensate by an interacting bosonic impurity and the resulting modes of rotations. Whereas the expectation values per particle of the angular-momentum operator for the many-body and mean-field solutions coincide at the limit of an infinite number of particles, the respective fluctuations can differ substantially. The results are analyzed in terms of the transformation properties of the angular-momentum operator under translations and boosts, and as a function of the interactions between the particles. Implications are briefly discussed.


2012 ◽  
Vol 85 (3) ◽  
Author(s):  
R. A. Kuzyakin ◽  
V. V. Sargsyan ◽  
G. G. Adamian ◽  
N. V. Antonenko ◽  
E. E. Saperstein ◽  
...  

1961 ◽  
Vol 16 (6) ◽  
pp. 583-598 ◽  
Author(s):  
F. B. Malik ◽  
E. Trefftz

The ionization cross-section of highly ionized oxygen, O4+, is calculated according to the “distorted-wave” method. Exchange between the scattered and the ejected electron is taken into account as far as it is of long range nature. It is shown that contributions of high total angular momentum L are essential, L=0 giving only 3% of the total cross-section. This result should qualitatively be the same for all highly ionized atoms, whereas the following seems to be a special feature of O V ionization: for energies around twice the ionization energy the contributions of the optically allowed transitions of the ejected electron (angular momentum lej=1) are relatively small. The contributions of lej =0, 1, 2 and 3 are about 16%, 18%, 24% and 19% respectively for E=20.13.6 eV=2.39 × Ionization energy. The maximum cross section is 0.112 at. u. = 0.31 ·10-18 cm2 for electrons of 310 eV kinetic energy (2.8 × ionization energy). It is about twice as large as given by the ELWERT formula.


1987 ◽  
Vol 125 ◽  
pp. 207-225
Author(s):  
Jonathan Arons

Some basic concepts of accretion onto the polar caps of magnetized neutron stars are reviewed. Preliminary results of new, multidimensional, time–dependent calculations of polar cap flow are outlined, and are used to suggest the possible observability of fluctuations in the X–ray intensity of accretion powered pulsars on time scales of 10–100 msec. The possible relevance of such fluctuations to Quasi–Periodic oscillations is suggested. Basic concepts of the interaction between a disk and the magnetosphere of a neutron star are also discussed. Some recent work on the disk–magnetosphere interaction is outlined, leading to the suggestion that a neutron star can lose angular momentum by driving some or all of the mass in the disk off as a centrifugally driven wind. The relevance of such mass loss to the orbital evolution of the binary is pointed out.


Sign in / Sign up

Export Citation Format

Share Document