Anisotropic solution for compact objects in f(𝒢,𝒯) gravity

2020 ◽  
Vol 35 (22) ◽  
pp. 2050121
Author(s):  
M. Sharif ◽  
Aroob Naeem

In this paper, we consider a new solution to discuss the physical aspects of anisotropic compact celestial bodies in the background of [Formula: see text] theory. We take static spherically symmetric metric to describe the internal region of the stellar objects and apply the embedding class-I method to get the metric solution corresponding to a specific [Formula: see text] model. By matching the interior and exterior geometries at the boundary, we find the values of unknown constants. We check the stability and viability of the resulting solution through various parameters that include energy bounds, causality condition, Herrera’s condition, role of adiabatic index, redshift and compactness factor. The graphical interpretation is done for some particular compact star candidates, i.e. LMC X-4, Cen X-3, 4U 1820-30 and Vela X-1. We conclude that our model provides physically acceptable structure of the considered compact objects and is also stable.

Physica Scripta ◽  
2021 ◽  
Author(s):  
Baiju Dayanandan ◽  
T. T. Smitha ◽  
Sunil Maurya
Keyword(s):  
Compact Star ◽  
Radial Component ◽  
Star Model ◽  
Seed System ◽  
The Stability ◽  
Metric Function ◽  

Abstract This paper addresses a new gravitationally decoupled anisotropic solution for the compact star model via the minimal geometric deformation (MGD) approach. We consider a non-singular well-behaved gravitational potential corresponding to the radial component of the seed spacetime and embedding class I condition that determines the temporal metric function to solve the seed system completely. However, two different well-known mimic approaches such as pr = Θ1 1 and ρ = Θ0 0 have been employed to determine the deformation function which gives the solution of the second system corresponding to the extra source. In order to test the physical viability of the solution, we have checked several conditions such as regularity conditions, energy conditions, causality conditions, hydrostatic equilibrium, etc. Moreover, the stability of the solutions has been also discussed by the adiabatic index and its critical value. We find that the solutions set seems viable as far as observational data are concerned.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
J. W. Jape ◽  
S. D. Maharaj ◽  
J. M. Sunzu ◽  
J. M. Mkenyeleye
Keyword(s):  
Compact Star ◽  
Compact Objects ◽  
Exact Model ◽  
Star Models ◽  
Special Cases ◽  
Physical Forces ◽  

AbstractWe generate a new generalized regular charged anisotropic exact model that admits conformal symmetry in static spherically symmetric spacetime. Our model was examined for physical acceptability as realistic stellar models. The regularity is not violated, the energy conditions are satisfied, the physical forces balanced at equilibrium, the stability is satisfied via adiabatic index, and the surface red shift and mass–radius ratio are within the required bounds. Our conformal charged anisotropic exact solution contains models generated by Finch–Skea, Vaidya–Tikekar and Schwarzschild. Also, some recent charged or neutral and anisotropic or isotropic conformally symmetric models are found as special cases of our exact model. Our approach using a conformal symmetry provides a generalized geometric framework for studying compact objects.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
S. Thirukkanesh ◽  
Robert S. Bogadi ◽  
Megandhren Govender ◽  
Sibusiso Moyo

AbstractWe investigate the stability and enhancement of the physical characteristics of compact, relativistic objects which follow a quadratic equation of state. To achieve this, we make use of the Vaidya–Tikekar metric potential. This gravitational potential has been shown to be suitable for describing superdense stellar objects. Pressure anisotropy is also a key feature of our model and is shown to play an important role in maintaining stability. Our results show that the combination of the Vaidya–Tikekar gravitational potential used together with the quadratic equation of state provide models which are favourable. In comparison with other equations of state, we have shown that the quadratic equation of state mimics the colour-flavour-locked equation of state more closely than the linear equation of state.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
S. A. Mardan ◽  
I. Noureen ◽  
A. Khalid

AbstractThis manuscript is related to the construction of relativistic core-envelope model for spherically symmetric charged anisotropic compact objects. The polytropic equation of state is considered for core, while it is linear in the case of envelope. We present that core, envelope and the Reissner Nordstr$$\ddot{o}$$ o ¨ m exterior regions of stars match smoothly. It has been verified that all physical parameters are well behaved in the core and envelope region for the compact stars SAX J1808.4-3658 and 4U1608-52. Various physical parameters inside star are discussed herein, non-singularity and continuity at the junction has been catered as well. Impact of charged compact object together with core-envelope model on the mass, radius and compactification factor is described by graphical representation in both core and envelop regions. The stability of the model is worked out with the help of Tolman–Oppenheimer–Volkoff equations and radial sound speed.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
M. Sharif ◽  
Iqra Nawazish ◽  
Shahid Hussain
Keyword(s):  
Noether Symmetry ◽  
Energy Tensor ◽  
Linear Quadratic ◽  
Energy Bounds ◽  
Stress Energy ◽  
Energy Bound ◽  
The Stability ◽  
Standard Energy ◽  

Abstract In this paper, we analyze static traversable wormholes via Noether symmetry technique in modified Gauss–Bonnet $$f(\mathcal {G})$$f(G) theory of gravity (where $$\mathcal {G}$$G represents Gauss–Bonnet term). We assume isotropic matter configuration and spherically symmetric metric. We construct three $$f(\mathcal {G})$$f(G) models, i.e, linear, quadratic and exponential forms and examine the consistency of these models. The traversable nature of wormhole solutions is discussed via null energy bound of the effective stress–energy tensor while physical behavior is studied through standard energy bounds of isotropic fluid. We also discuss the stability of these wormholes inside the wormhole throat and conclude the presence of traversable and physically stable wormholes for quadratic as well as exponential $$f(\mathcal {G})$$f(G) models.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
S. K. Maurya ◽  
Asma Mohammed Al Aamri ◽  
Athari Khalifa Al Aamri ◽  
Riju Nag

AbstractWe present a new systematic approach to find the exact gravitationally decoupled anisotropic spherical solution in the presence of electric charge by using the complete geometric deformation (CGD) methodology. To do this, we apply the transformations over both gravitational potentials by introducing two unknown deformation functions. This new systematic approach allows us to obtain the exact solution of the field equations without imposing any particular ansatz for the deformation functions. Specifically, a well-known mimic approach and equation of state (EOS) have been applied together for solving the system of equations, which determine the radial and temporal deformation functions, respectively. The matching conditions at the boundary of the stellar objects with the exterior Reissner–Nordström metric are discussed in detail. In order to see the physical validity of the solution, we used well-behaved interior seed spacetime geometry and solved the system of equations using the above approaches. Next, we presented several physical properties of the solution through their graphical representations. The stability and dynamical equilibrium of the solution have been also discussed. Finally, we predicted the radii and mass-radius ratio for several compact objects for different decoupling parameters together with the impact of the decoupling parameters on the thermodynamical observables.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Pramit Rej ◽  
Piyali Bhar ◽  
Megan Govender
Keyword(s):  
Modified Gravity ◽  
Line Element ◽  
Compact Star ◽  
Stellar System ◽  
Radial Pressure ◽  
Field Equations ◽  

AbstractIn this current study, our main focus is on modeling the specific charged compact star SAX J 1808.4-3658 (M = 0.88 $$M_{\odot }$$ M ⊙ ,  R = 8.9 km) within the framework of $$f(R,\,T)$$ f ( R , T ) modified gravity theory using the metric potentials proposed by Tolman–Kuchowicz (Tolman in Phys Rev 55:364, 1939; Kuchowicz in Acta Phys Pol 33:541, 1968) and the interior spacetime is matched to the exterior Reissner–Nordström line element at the surface of the star. Tolman–Kuchowicz metric potentials provide a singularity-free solution which satisfies the stability criteria. Here we have used the simplified phenomenological MIT bag model equation of state (EoS) to solve the Einstein–Maxwell field equations where the density profile ($$\rho $$ ρ ) is related to the radial pressure ($$p_{\mathrm{r}}$$ p r ) as $$p_{\mathrm{r}}(r) = (\rho - 4B_{\mathrm{g}})/3$$ p r ( r ) = ( ρ - 4 B g ) / 3 . Furthermore, to derive the values of the unknown constants $$a,\, b,\, B,\, C$$ a , b , B , C and the bag constant $$B_{\mathrm{g}}$$ B g , we match our interior spacetime to the exterior Reissner–Nordström line element at the surface of stellar system. In addition, to check the physical validity and stability of our suggested model we evaluate some important properties, such as effective energy density, effective pressures, radial and transverse sound velocities, relativistic adiabatic index, all energy conditions, compactness factor and surface redshift. It is depicted from our current study that all our derived results lie within the physically accepted regime which shows the viability of our present model in the context of $$f(R,\,T)$$ f ( R , T ) modified gravity.


2021 ◽  
Vol 36 (32) ◽  
Author(s):  
S. K. Maurya ◽  
Anirudh Pradhan ◽  
Ayan Banerjee ◽  
Francisco Tello-Ortiz ◽  
M. K. Jasim

In astronomy, the study of compact stellar remnants — white dwarfs, neutron stars, black holes — has attracted much attention for addressing fundamental principles of physics under extreme conditions in the core of compact objects. In a recent argument, Maurya et al. [Eur. Phys. J. C 77, 45 (2017)] have proposed an exact solution depending on a specific spacetime geometry. Here, we construct equilibrium configurations of compact stars for the same spacetime that make it interesting for modeling high density physical astronomical objects. All calculations are carried out within the framework of the five-dimensional Einstein–Gauss–Bonnet gravity. Our main interest is to explore the dependence of the physical properties of these compact stars depending on the Gauss–Bonnet coupling constant. The interior solutions have been matched to an exterior Boulware–Deser solution for [Formula: see text] spacetime. Our finding ensures that all energy conditions hold, and the speed of sound remains causal, everywhere inside the star. Moreover, we study the dynamical stability of stellar structure by taking into account the modified field equations using the theory of adiabatic radial oscillations developed by Chandrasekhar. Based on the observational data for radii and masses coming from different astronomical sources, we show that our model is compatible and physically relevant.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
G. G. L. Nashed ◽  
S. Capozziello
Keyword(s):  
Radial Component ◽  
Compact Objects ◽  
Compact Stars ◽  
Star Model ◽  
Stellar Objects ◽  

AbstractWe derive a new interior solution for stellar compact objects in $$f\mathcal {(R)}$$ f ( R ) gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the first derivative of $$f\mathcal {(R)}$$ f ( R ) . After, the time component of the metric potential and the form of $$f({\mathcal {R}})$$ f ( R ) function are derived. From these results, it is possible to obtain the radial and tangential components of pressure and the density. The resulting interior solution represents a physically motivated anisotropic neutron star model. It is possible to match it with a boundary exterior solution. From this matching, the components of metric potentials can be rewritten in terms of a compactness parameter C which has to be $$C=2GM/Rc^2<<0.5$$ C = 2 G M / R c 2 < < 0.5 for physical consistency. Other physical conditions for real stellar objects are taken into account according to the solution. We show that the model accurately bypasses conditions like the finiteness of radial and tangential pressures, and energy density at the center of the star, the positivity of these components through the stellar structure, and the negativity of the gradients. These conditions are satisfied if the energy-conditions hold. Moreover, we study the stability of the model by showing that Tolman–Oppenheimer–Volkoff equation is at hydrostatic equilibrium. The solution is matched with observational data of millisecond pulsars with a withe dwarf companion and pulsars presenting thermonuclear bursts.


10.1139/cjp-2019-0195 ◽  
2020 ◽  
Vol 98 (5) ◽  
pp. 464-469
Author(s):  
M. Zubair ◽  
Maham Lodhi ◽  
G. Abbas ◽  
Mehwish Bari

In this paper, we have discussed the anisotropic matter configuration to explore the existence of realistic stellar objects in non-conservative theory named as Rastall theory of gravity. We have assumed a static spherically symmetric metric with linear equation of state (EoS) to formulate the dynamical equations. The Durgapal and Banerji transformation is employed to investigate the gravitational behavior of compact objects. In this regard, a particular gravitational potential is selected to solve the system of dynamical equations numerically. We compared change in behavior of physical quantities like energy density, anisotropy parameter, and radial and tangential pressures by plotting three particular cases. With the help of physical analysis, it can be seen that the solutions of compact spheres hold physical acceptability criteria and depict stability.


Sign in / Sign up

Export Citation Format

Share Document