scholarly journals Unified FSM treatment of CP physics extended to hidden sector giving (i) δCP for leptons as prediction, (ii) new hints on the material content of the universe

Author(s):  
Jose Bordes ◽  
Chan Hong-Mo ◽  
Tsou Sheung Tsun

Matter in the Universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the Universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the Universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the Universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.


2008 ◽  
Vol 23 (30) ◽  
pp. 4817-4827 ◽  
Author(s):  
O. BERTOLAMI ◽  
R. ROSENFELD

We examine a scenario where the Higgs boson is coupled to an additional Standard Model singlet scalar field from a hidden sector. We show that, in the case where this field is very light and has already relaxed to its nonzero vacuum expectation value, one gets a very stringent limit on the mixing angle between the hidden sector scalar and the Higgs field from fifth force experiments. However, this limit does not imply in a small coupling due to the large difference of vacuum expectation values. In the case that the hidden sector scalar is identified with the quintessence field, responsible for the recent acceleration of the universe, the most natural potential describing the interaction is disfavored since it results in a time-variation of the Fermi scale. We show that an ad hoc modification of the potential describing the Higgs interaction with the quintessence field may result in an unified picture of dark matter and dark energy, where dark energy is the zero-mode classical field rolling the usual quintessence potential and the dark matter candidate is the quantum excitation (particle) of the field, which is produced in the universe due to its coupling to the Higgs boson. This coupling also generates a mass for the new particle that, contrary to usual quintessence models, does not have to be small, since it does not affect the evolution of classical field. In this scenario, a feasible dark matter density can be, under conditions, obtained.


2003 ◽  
Vol 18 (39) ◽  
pp. 2785-2793 ◽  
Author(s):  
MITSUO J. HAYASHI ◽  
TOMOKI WATANABE ◽  
ICHIRO AIZAWA ◽  
KOICHI AKETO

The theory of inflation will be investigated as well as supersymmetry breaking in the context of supergravity, incorporating the target-space duality and the nonperturbative gaugino condensation in the hidden sector. We found an inflationary trajectory of a dilaton field and a condensate field which breaks supersymmetry at once. The model satisfies the slow-roll condition which solves the η-problem. When the particle rolls down along the minimized trajectory of the potential V(S,Y) at a duality invariant point of T=1, we can obtain the e-fold value ~57. And then the cosmological parameters obtained from our model well match the recent WMAP data combined with other experiments. This observation suggests one to consider the string-inspired supergravity as a fundamental theory of the evolution of the universe as well as the particle theory.


2021 ◽  
Author(s):  
Theodota Lagouri

Abstract The Standard Model (SM), while extremely powerful as a description of the strong, electromagnetic and weak interactions, does not provide a natural candidate to explain Dark Matter (DM). Theoretical as well as experimental motivation exists for the existence of a hidden or dark sector of phenomena that couples either weakly or in a special way to SM fields. Hidden sector or dark sector states appear in many extensions to SM to provide a particular candidate DM in the universe or to explain astrophysical observations. If there is such a family of Beyond the Standard Model (BSM) particles and interactions, they may be accessible experimentally at the Large Hadron Collider (LHC) at CERN and at future High Energy Colliders. In this paper, the main focus is given on selected searches conducted at LHC experiments related to Higgs Hidden-Dark Sector Physics. The current constraints and future prospects of these studies are summarized.


Author(s):  
Helge Kragh

Although modern cosmology is essentially a twentieth-century science, its birth can reasonably be traced back to discussions about the universe in the previous century. With the emergence of astrophysics in the 1860s astronomy was substantially changed and the material content of the universe became an issue of science. At about the same time thermodynamics was applied to the universe at large, with the result that the beginning and end of the universe entered astronomical thought. Moreover, it became slowly realized that space can be described as curved rather than flat. In that case it would be possible to speak about a finite and yet unbounded universe and in this way to solve some of the problems associated with the traditional view of an infinite number of stars. These and other problems were only fully understood in the twentieth century, but they were discussed before Einstein revolutionized cosmology.


2019 ◽  
Vol 34 (13n14) ◽  
pp. 1940010 ◽  
Author(s):  
Jia Liu ◽  
Lian-Tao Wang ◽  
Xiao-Ping Wang ◽  
Wei Xue

We investigate the prospects of searching dark sector models via exotic [Formula: see text]-boson decay at future [Formula: see text] colliders with Giga [Formula: see text] and Tera [Formula: see text] options. Four general categories of dark sector models: Higgs portal dark matter, vector portal dark matter, inelastic dark matter and axion-like particles, are considered. Focusing on channels motivated by the dark sector models, we carry out a model independent study of the sensitivities of [Formula: see text]-factories in probing exotic decays. The limits on branching ratios of the exotic [Formula: see text] decay are typically [Formula: see text] for the Giga [Formula: see text] and [Formula: see text] for the Tera [Formula: see text], and they are compared with the projection for the high luminosity LHC. We demonstrate that future [Formula: see text]-factories can provide its unique and leading sensitivity, and highlight the complementarity with other experiments, including the indirect and direct dark matter search limits, and the existing collider limits. Future [Formula: see text] factories will play a leading role to uncover the hidden sector of the universe in the future.


1989 ◽  
Vol 53 (7) ◽  
pp. 1712
Author(s):  
Michael E. Lipschutz

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 281-303 ◽  
Author(s):  
Maksym Deliyergiyev

AbstractMany difficulties are encountered when attempting to pinpoint a common origin for several observed astrophysical anomalies, and when assessing their tension with existing exclusion limits. These include systematic uncertainties affecting the operation of the detectors, our knowledge of their response, astrophysical uncertainties, and the broad range of particle couplings that can mediate interaction with a detector target. Particularly interesting astrophysical evidence has motivated a search for dark-photon, and focused our attention on a Hidden Valleys model with a GeV-scale dark sector that produces exciting signatures. Results from recent underground experiments are also considered.There is a ‘light’ hidden sector (dark sector), present in many models of new physics beyond the Standard Model, which contains a colorful spectrum of new particles. Recently, it has been shown that this spectrum can give rise to unique signatures at colliders when the mass scale in the hidden sector is well below a TeV; as in Hidden Valleys, Stueckelberg extensions, and Unparticle models. These physics models produce unique signatures of collimated leptons at high energies. By studying these ephemeral particles we hope to trace the history of the Universe. Our present theories lead us to believe that there is something new just around the corner, which should be accessible at the energies made available by modern colliders.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Amin Aboubrahim ◽  
Tarek Ibrahim ◽  
Michael Klasen ◽  
Pran Nath

AbstractIt is shown that a decaying neutralino in a supergravity unified framework is a viable candidate for dark matter. Such a situation arises in the presence of a hidden sector with ultraweak couplings to the visible sector where the neutralino can decay into the hidden sector’s lightest supersymmetric particle (LSP) with a lifetime larger than the lifetime of the universe. We present a concrete model where the MSSM/SUGRA is extended to include a hidden sector comprised of $$U(1)_{X_1} \times U(1)_{X_2}$$ U ( 1 ) X 1 × U ( 1 ) X 2 gauge sector and the LSP of the hidden sector is a neutralino which is lighter than the LSP neutralino of the visible sector. We compute the loop suppressed radiative decay of the visible sector neutralino into the neutralino of the hidden sector and show that the decay can occur with a lifetime larger than the age of the universe. The decaying neutralino can be probed by indirect detection experiments, specifically by its signature decay into the hidden sector neutralino and an energetic gamma ray photon. Such a gamma ray can be searched for with improved sensitivity at Fermi-LAT and by future experiments such as the Square Kilometer Array (SKA) and the Cherenkov Telescope Array (CTA). We present several benchmarks which have a natural suppression of the hadronic channels from dark matter annihilation and decays and consistent with measurements of the antiproton background.


2011 ◽  
Vol 84 (6) ◽  
Author(s):  
C. R. Das ◽  
L. V. Laperashvili ◽  
H. B. Nielsen ◽  
A. Tureanu

Sign in / Sign up

Export Citation Format

Share Document